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Abstract. The geometric properties of the set of standard (decom-
posable) symmetrized tensors are studied and some general results are
obtained. As an example, the geometry is worked out completely in the
case where the group is a dihedral group, and this result is used to give
a more conceptual proof of an earlier result. As another example, it
is shown that there exists an orbital subspace such that the standard
symmetrized tensors in the subspace form a root system isomorphic to
a given irreducible root system if and only if the irreducible root system
is simply laced.

0. Introduction

Let G be a subgroup of the symmetric group Sn (n ∈ N) and let V be
an inner product space. Orthogonality properties of the set of standard
(decomposable) symmetrized tensors in V ⊗n corresponding to G have been
studied for more than two decades [WG91, HT92, Hol95, DP99, BPR03,
Hol04, TS12]. The determination of such properties would be facilitated by
an understanding of the more general geometric properties of this set. We
propose a framework for the study of such properties.

The space V ⊗n is an orthogonal direct sum of orbital subspaces, so it is
sufficient to study the sets of standard symmetrized tensors in these sub-
spaces. It then follows that it is sufficient to study for each irreducible
character χ of G and each subgroup H of G the set Ψ of standard vectors
in the coset space CχH (see Section 3).

In Section 4 we obtain some general results about the pairs (CχH ,Ψ). Then
in Section 5 we compute all such pairs in the case where G is a dihedral
group and use our results to give a more conceptual proof of an earlier
result in [Hol04]. Finally, in Section 6 we generalize a result of Torres and
Silva [TS12] by showing that there exists an orbital subspace such that the
standard symmetrized tensors in the subspace form a root system isomorphic
to a given irreducible root system if and only if the irreducible root system
is simply laced.

2010 Mathematics Subject Classification. 15A69, 20C15, 20C30.
Key words and phrases. Symmetrized tensors, coset space, dihedral group, root system.

1



2 HANK G. HARMON RANDALL R. HOLMES

1. Hermitian form

In this section and the next we review, for the convenience of the reader,
some standard (and also some less standard) terminology and results.

Let V be a complex vector space. A function f : V × V → C is a
Hermitian form on V if for all u, v, w ∈ V and α ∈ C the following hold:

(i) f(u+ v, w) = f(u,w) + f(v, w),
(ii) f(αv,w) = αf(v, w),

(iii) f(v, w) = f(w, v).

Let f be a Hermitian form on V . It follows from the axioms that f is
antilinear in the second argument (meaning f(u, v +w) = f(u, v) + f(u,w)
and f(v, αw) = ᾱf(v, w) for all u, v, w ∈ V and α ∈ C) and that f(v, v) ∈ R
for all v ∈ V .

The Hermitian form f is positive semidefinite if f(v, v) ≥ 0 for all v ∈ V ;
it is an inner product if it is positive semidefinite and it satisfies the definite
property: f(v, v) = 0 if and only if v = 0.

The kernel of f is the subspace ker f = {v ∈ V | f(v, w) = 0 for all w ∈
V } of V . Put V̄ = V/ ker f and denote by v 7→ v̄ the canonical epimorphism
V → V̄ . (Context should keep any confusion from arising between this
notation and that for complex conjugation.) The function f̄ : V̄ × V̄ → C
given by f̄(v̄, w̄) = f(v, w) is a well-defined Hermitian form on V̄ .

1.1 Lemma. Let f be a positive semidefinite Hermitian form on V .

(i) ker f = {v ∈ V | f(v, v) = 0}.
(ii) The function f̄ is an inner product on V̄ .

Proof. (i) Let v ∈ {v ∈ V | f(v, v) = 0} =: W . Then ‖v‖ = f(v, v)1/2 = 0,
so |f(v, w)| ≤ ‖v‖‖w‖ = 0 for all w ∈ V , where we have used the Cauchy-
Schwartz inequality (the proof of which does not require the definite prop-
erty). Therefore, v ∈ ker f and we conclude that W ⊆ ker f . The other
inclusion follows immediately from the definition of ker f .

(ii) The Hermitian form f̄ is positive semidefinite, so it is enough to show
that it satisfies the definite property. Let v ∈ V and assume that f̄(v̄, v̄) = 0.
Then f(v, v) = 0 so that v ∈ ker f by (i). Therefore v̄ = 0 as desired. �

2. Similarity transformation

Let V be an inner product space (i.e., a complex vector space with an
inner product, which we denote by ( · , · )). The inner product on V induces

a norm on V given by ‖v‖ = (v, v)1/2.

2.1 Proposition. Let V and V ′ be inner product spaces, let ϕ : V → V ′

be a linear map, and let r be a positive real number. The following are
equivalent:

(i) ‖ϕ(v)‖ = r‖v‖ for all v ∈ V .
(ii) (ϕ(v), ϕ(w)) = r2(v, w) for all v, w ∈ V .
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Proof. Assume that (i) holds. For v and w in either V or V ′, the polarization
identity holds:

(v, w) =
1

4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
.

Therefore, using the linearity of ϕ and (i), we get (ϕ(v), ϕ(w)) = r2(v, w)
for all v, w ∈ V , so (ii) holds.

Now assume that (ii) holds. For every v ∈ V , we have

‖ϕ(v)‖ = (ϕ(v), ϕ(v))1/2 = r(v, v)1/2 = r‖v‖,

so (i) holds. �

A linear map ϕ : V → V ′ satisfying the equivalent conditions of Propo-
sition 2.1 is a similarity transformation (of ratio r). Such a map preserves
angles as well as relative lengths (i.e., ‖ϕ(v)‖/‖ϕ(w)‖ = ‖v‖/‖w‖). A simi-
larity transformation of ratio 1 is an isometry.

2.2 Corollary. Let r be a positive real number. A linear map ϕ : V → V ′

is a similarity transformation of ratio r if and only if ϕ = ψµr for some
isometry ψ : V → V ′, where µr : V → V is the homothety given by µr(v) =
rv.

Proof. Let ϕ : V → V ′ be a linear map. Assume that ϕ is a similarity
transformation of ratio r. The map ψ : V → V ′ given by ψ = ϕµ1/r is linear
and ϕ = ψµr. Moreover, ‖ψ(v)‖ = ‖ϕ((1/r)v)‖ = r‖(1/r)v‖ = ‖v‖ for all
v ∈ V , so ψ is an isometry. The converse is proved similarly. �

2.3 Proposition. Let V be a complex vector space with positive semidefi-
nite Hermitian form f , let V ′ be an inner product space, let r be a positive
real number, and let ϕ : V → V ′ be a linear map satisfying (ϕ(v), ϕ(w)) =
rf(v, w) for all v, w ∈ V . The map ϕ̄ : V̄ → V ′ given by ϕ̄(v̄) = ϕ(v) is a
well-defined injective similarity transformation of ratio

√
r.

Proof. For v ∈ V , we have (ϕ(v), ϕ(v)) = rf(v, v), so it follows from Lemma
1.1 that ker f = kerϕ. Therefore, the map ϕ̄ is well-defined and injective.
For v̄, w̄ ∈ V̄ , we have (ϕ̄(v̄), ϕ̄(w̄)) = (ϕ(v), ϕ(w)) = rf(v, w) = rf̄(v̄, w̄),
so ϕ̄ is a similarity transformation of ratio

√
r. �

Let V and V ′ be inner product spaces and let Φ ⊆ V and Φ′ ⊆ V ′. We
write

(V,Φ) ∼ (V ′,Φ′)

to mean that there exists a bijective similarity transformation ϕ : V → V ′

such that ϕ(Φ) = Φ′. The relation ∼ is an equivalence relation on the
class of all pairs (V,Φ), where V is an inner product space and Φ ⊆ V . If
(V,Φ) ∼ (V ′,Φ′) we say that (V,Φ) is similarly equivalent to (V ′,Φ′).



4 HANK G. HARMON RANDALL R. HOLMES

Let {Vi}i∈I be a family of inner product spaces and let Φi be a subset of
Vi for each i ∈ I. Given an inner product space V with subset Φ, we write

(V,Φ) ∼
⊕
i∈I

(Vi,Φi)

to mean that there exist Φ′i ⊆ V ′i ≤ V (i ∈ I) such that Φ =
⋃
i Φ′i,

V =
∑̇

iV
′
i (internal orthogonal direct sum), and (V ′i ,Φ

′
i) ∼ (Vi,Φi) for each

i ∈ I.

3. Symmetrized tensors

Fix positive integers n and m and set Γn,m = {γ ∈ Zn | 1 ≤ γi ≤ m}. Fix
a subgroup G of the symmetric group Sn. A right action of G on the set
Γn,m is given by γσ = (γσ(1), . . . , γσ(n)) (γ ∈ Γn,m, σ ∈ G). The stabilizer of
γ ∈ Γn,m is the set Gγ = {σ ∈ G | γσ = γ}.

Let V be an inner product space of dimension m and let {ei | 1 ≤ i ≤ m}
be an orthonormal basis for V . The inner product on V induces an inner
product on V ⊗n (the nth tensor power of V ) and, with respect to this inner
product, the set {eγ | γ ∈ Γn,m} is an orthonormal basis for V ⊗n, where
eγ = eγ1 ⊗ · · · ⊗ eγn .

The space V ⊗n is a (left) CG-module with action given by σeγ = eγσ−1

(σ ∈ G, γ ∈ Γn,m), extended linearly. The inner product on V ⊗n is G-
invariant, which is to say (σv, σw) = (v, w) for all σ ∈ G and all v, w ∈ V ⊗n.

Let χ ∈ Irr(G) (the set of irreducible characters of G). The symmetrizer
corresponding to χ is

sχ =
χ(e)

|G|
∑
σ∈G

χ(σ−1)σ ∈ CG,

where e denotes the identity element of G. This element sχ is the central
idempotent of CG corresponding to χ [CR62, 33.8].

Let γ ∈ Γn,m. The standard (decomposable) symmetrized tensor corre-
sponding to χ and γ is eχγ = sχeγ . The orbital subspace of V ⊗n corresponding
to χ and γ, denoted V χ

γ , is the span of the set Σ = Σχ
γ = {eχγσ |σ ∈ G}. The

space V ⊗n is an orthogonal direct sum of orbital subspaces.

Next, we recall the definition of the coset space CχH corresponding to χ
and a subgroup H of G [Hol04]. (This construction does not require G to
be a subgroup of a symmetric group.)

Let H be a subgroup of G. The natural action of G on the set G/H of left
cosets of H induces a CG-module structure on the vector space C(G/H)
with basis G/H.

Let χ ∈ Irr(G). A well-defined G-invariant positive semidefinite Hermit-
ian form Bχ

H on C(G/H) is obtained by putting

Bχ
H(aH, bH) =

χ(e)

|H|
∑
h∈H

χ(b−1ah)
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(a, b ∈ G) and extending linearly to C(G/H). The coset space corresponding
to χ and H is the space CχH = C(G/H)/ kerBχ

H . By Lemma 1.1, Bχ
H induces

an inner product B̄χ
H on CχH . We have

dim CχH = χ(e)(χ, 1)H =
χ(e)

|H|
∑
h∈H

χ(h),

where, as usual, (ϕ,ψ)H = |H|−1
∑

h∈H ϕ(h)ψ(h−1) for functions ϕ,ψ :
G→ C.

We refer to aH ∈ CχH (a ∈ G) as a standard vector. Put Ψ = Ψχ
H =

{aH | a ∈ G} ⊆ CχH .

3.1 Theorem. For γ ∈ Γn,m, we have (V χ
γ ,Σ) ∼ (CχGγ ,Ψ).

Proof. Let γ ∈ Γn,m and put H = Gγ . The map G/H → V χ
γ , σH 7→ eχ

γσ−1 ,

is well-defined and it induces a surjective linear map ϕ : C(G/H) → V χ
γ .

For σ, τ ∈ G, we have

(ϕ(σH), ϕ(τH)) = (eχ
γσ−1 , e

χ
γτ−1) =

χ(e)

|G|
∑
µ∈H

χ(τ−1σµ)(3.1.1)

= rBχ
H(σH, τH),

where r = |G : H|−1 and where the second equality is from [Fre73, p. 339]
(with χ̄ in place of χ). Using linearity we get (ϕ(x), ϕ(y)) = rBχ

H(x, y) for
all x, y ∈ C(G/H), so by Proposition 2.3, the induced map ϕ̄ : CχH → V χ

γ

given by ϕ̄(x̄) = ϕ(x) is a well-defined bijective similarity transformation.
Moreover ϕ̄(Ψ) = Σ, so the claim follows. �

According to Theorem 3.1, every orbital subspace can be identified with
a coset space in such a way that the standard symmetrized tensors in the or-
bital subspace identify, in an angle preserving and relative length preserving
manner, with the standard vectors in the coset space.

The following result says that, conversely, every coset space can be sim-
ilarly identified with an orbital subspace. The statement requires some ex-
planation: Let G = {g1, . . . , gn} be a finite group. The Cayley embedding
of G in the symmetric group S|G| is the monomorphism ϕ : G→ S|G| given
by ϕ(g) = λg, with λg : G → G defined by λg(a) = ga. Here, we regard λg
as an element of S|G| by using the identification {1, . . . , n} ↔ G, i↔ gi. Us-
ing this same identification, we write γgi to mean γi for γ ∈ Γ|G|,m. Hence,
γg = (γgg1 , . . . , γggn) for γ = (γg1 , . . . , γgn) = (γ1, . . . , γn) ∈ Γ|G|,m and
g ∈ G.

3.2 Corollary. Assume that m = dimV ≥ 2. Let G be a finite group, let
χ ∈ Irr(G), and let H ≤ G. Identifying G as a subgroup of S|G| via the

Cayley embedding, we have (CχH ,Ψ) ∼ (V χ
γ ,Σ), where γ ∈ Γ|G|,m is defined

by putting γg equal to 1 or 2 according as g ∈ H or g /∈ H.
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Proof. We have H = Gγ , so the claim follows from Theorem 3.1. �

Let G be a subgroup of Sn. The space V ⊗n is an orthogonal direct sum
of orbital subspaces, so in order to study the geometry of the full set of
standard symmetrized tensors associated with G, it is enough to study the
set of standard symmetrized tensors in each orbital subspace of V ⊗n. For
this, it is enough, due to Theorem 3.1, to study each pair (CχH ,Ψ) with
χ ∈ Irr(G) and H ≤ G, although studying just those pairs with H = Gγ for
some γ ∈ Γn,m would suffice.

Now let G be an arbitrary finite group and suppose that we wish to study
the standard symmetrized tensors associated with every embedding of G in
a symmetric group. Since every subgroup of G is a stabilizer in the case of
the Cayley embedding (see Corollary 3.2), we need to study all pairs (CχH ,Ψ)
with χ ∈ Irr(G) and H ≤ G. For this, a concrete realization of each (CχH ,Ψ)
would be useful, so we suggest the following problem (see the end of Section
2 for notation).

3.3 Problem. Let G be a finite group. For each χ ∈ Irr(G) and each
H ≤ G find positive integers n1, . . . , nt and subsets Φi ⊆ Cni (1 ≤ i ≤ t)
such that (CχH ,Ψ) ∼

⊕
i(C

ni ,Φi).

By way of illustration, we provide in Section 5 a solution to this problem
in the case where G is a dihedral group (see Theorem 5.1).

3.4 Remark. Suppose a solution to Problem 3.3 for fixed χ and H is given.
It is then a routine exercise to realize the set Ψ of standard vectors in CχH
as a set of vectors in a single space Cn:

Since the elements of Ψ all have the same length, it follows that, for
each i, the elements of Φi all have the same length as well. So by scal-
ing, if necessary, we may arrange for each Φi to consist of unit vectors.
Then, since again the elements of Ψ all have the same length, the assumed
bijective similarity transformations in the definition of the direct sum are
all forced to have the same ratio and they can therefore form the compo-
nent functions of a single bijective similarity transformation to show that
(CχH ,Ψ) ∼ (

⊕
iC

ni ,
⋃
i ιi(Φi)) ∼ (Cn,Φ). Here, ιi : Cni →

⊕
j C

nj is the

ith injection, n =
∑

i ni, and Φ is the image of
⋃
i ιi(Φi) under the natural

isomorphism
⊕

iC
ni → Cn.

While realizing the set Ψ in a single space Cn has a certain appeal, the
carrying out of the procedure just described adds complexity without pro-
viding additional information about the geometry, so this is why we have
allowed for more flexibility in the statement of the problem.

4. General results

Let G be a finite group. In this section, we obtain some general results
about the pairs (CχH ,Ψ) with χ ∈ Irr(G) and H ≤ G (see Problem 3.3 and
the remarks preceding it).
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For a, g ∈ G and H ≤ G, we use the notation ag = g−1ag and Hg =
{hg |h ∈ H}. The following theorem shows that Problem 3.3 can be consid-
ered solved for arbitrary H ≤ G once it has been solved for all H in a set of
representatives for the conjugacy classes of subgroups of G.

4.1 Theorem. Let χ ∈ Irr(G) and let H ≤ G. For every g ∈ G, we have
(CχH ,Ψ

χ
H) ∼ (CχHg ,Ψ

χ
Hg).

Proof. Let g ∈ G. There is a well-defined linear map ϕ : C(G/H) → CχHg

uniquely determined by ϕ(aH) = agHg (a ∈ G). For a, b ∈ G, we have

B̄χ
Hg(ϕ(aH), ϕ(bH)) = B̄χ

Hg(agHg, bgHg) =
χ(e)

|Hg|
∑
h∈H

χ((bg)−1aghg)

=
χ(e)

|H|
∑
h∈H

χ(b−1ah) = Bχ
H(aH, bH),

where the third equality follows from the fact that G → G by x 7→ xg is
an automorphism and then the fact that χ is constant on conjugacy classes.
Using linearity, we get B̄χ

Hg(ϕ(x), ϕ(y)) = Bχ
H(x, y) for all x, y ∈ C(G/H).

Now ϕ is surjective, so by Proposition 2.3 the induced map ϕ̄ : CχH → C
χ
Hg is

a well-defined bijective similarity transformation. Moreover, ϕ̄(Ψχ
H) = Ψχ

Hg ,
so the claim follows. �

For a CG-module M and x ∈ M , put Gx = {g ∈ G | gx = x} (stabilizer
of x) and Gx = {gx | g ∈ G} (orbit of x).

4.2 Theorem. Let M be a simple CG-module with a G-invariant inner
product, let χ ∈ Irr(G) be the character of G afforded by M , and let 0 6=
m1 ∈ M . If H is a subgroup of G with H ⊆ Gm1 and (χ, 1)H = 1, then
(CχH ,Ψ) ∼ (M,Gm1).

Proof. Let H be a subgroup of G with H ⊆ Gm1 and (χ, 1)H = 1. We have
MH = M1+̇M2+̇ · · · +̇Mt, where the Mi are simple CH-submodules of MH

with M1 = Cm1 and Mi �M1 for all i 6= 1. Let eH = |H|−1
∑

h∈H h. Then
eH is the central idempotent of CH corresponding to the trivial CH-module,
so that eHM1 = M1 and eHMi = 0 for i 6= 1.

Put N =
∑

i 6=1Mi. Using the G-invariance of the inner product on M ,
we get

(N,M1) = (N, eHM1) =
1

|H|
∑
h∈H

(N,hM1)

=
1

|H|
∑
h∈H

(h−1N,M1) = (eHN,M1) = (0,M1) = 0.

Since H ⊆ Gm1 , we get a well-defined linear map ϕ : C(G/H) → M
uniquely determined by ϕ(aH) = am1 (a ∈ G), which is seen to be a CG-
homomorphism.
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We claim that (ϕ(x), ϕ(y)) = rBχ
H(x, y) for all x, y ∈ C(G/H), where

r = (m1,m1)/χ(e). Let x, y ∈ C(G/H). Due to the linearity and G-
invariance of the forms and the fact that ϕ is a CG-homomorphism, we may
assume that x = aH and y = H for some a ∈ G.

Extend the basis {m1} of M1 to a basis B = {m1,m2, . . . ,mn} of M by
choosing a basis for each Mi and forming their union. Let α : G→ GLn(C),
g 7→ [αij(g)], be the matrix representation of G afforded by M relative to
B.

On the one hand,

(ϕ(x), ϕ(y)) = (am1,m1) =
∑
i

αi1(a)(mi,m1) = α11(a)(m1,m1),

since (M1, N) = 0. On the other hand,

|H|
χ(e)

Bχ
H(x, y) =

∑
h∈H

χ(ah) =
∑
h∈H

∑
i

αii(ah) =
∑
h∈H

∑
i,j

αij(a)αji(h)

=
∑
i,j

αij(a)
∑
h∈H

αji(h) = |H|α11(a),

since
∑

h∈H αji(h) =
∑

h∈H α11(h
−1)αji(h) = |H|δ1jδ1i (Kronecker delta)

by [Ser77, p. 14, Corollaries 2 and 3]. Therefore, (ϕ(x), ϕ(y)) = rBχ
H(x, y),

as claimed.
Now ϕ is nonzero (since m1 6= 0), so it is surjective (since M is simple).

It then follows from Proposition 2.3 that the map ϕ̄ : CχH → M given by
ϕ̄(x̄) = ϕ(x) is a well-defined bijective similarity transformation. Finally,
we have ϕ̄(aH) = am1 for each a ∈ G, so ϕ̄(Ψ) = Gm1 and the proof is
complete. �

For an explanation of the notation in the following theorem, see the end
of Section 2.

4.3 Theorem. Let χ ∈ Irr(G) and let A and K be subgroups of G such
that G = AK and χ(g) = 0 for all g ∈ G\A. We have

(CχH ,Ψ
χ
H) ∼

n⊕
i=1

(
CχK ,Ψ

χ
K

)
,

where H = A ∩K and n = |G : A|.

Proof. Since G = (AK)−1 = K−1A−1 = KA, there exists a complete set
{k1, k2, . . . , kn} of left coset representatives of A in G with ki ∈ K for each
i. Fix 1 ≤ i ≤ n and put Ci = {kiaH | a ∈ A}. The map Ci → CχK
given by kiaH 7→ aK is well defined and it induces a surjective linear map
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ϕ : CCi → CχK . For a1, a2 ∈ A we have

|H|
χ(e)

Bχ
H(kia1H, kia2H) =

∑
h∈H

χ((kia2)
−1(kia1)h) =

∑
k∈K

χ(a−12 a1k)

=
|K|
χ(e)

B̄χ
K(a1K, a2K)

=
|K|
χ(e)

B̄χ
K(ϕ(kia1H), ϕ(kia2H)),

so, by linearity of the forms, we get B̄χ
K(ϕ(x), ϕ(y)) = rBχ

H(x, y) for all x, y ∈
CCi, where r = |K : H|−1. It follows from Proposition 2.3 that ϕ induces a
well-defined bijective similarity transformation ϕ̄ : CCi/ kerB′ → CχK satis-
fying ϕ̄(x+ kerB′) = ϕ(x) for all x ∈ CCi, where B′ denotes the restriction
of the form Bχ

H to CCi. Using Lemma 1.1(i) we get kerB′ = CCi ∩ kerBχ
H ,

so by an isomorphism theorem, CCi/ kerB′ ∼= (CCi + kerBχ
H)/ kerBχ

H =

CCi ⊆ CχH , with the isomorphism sending x + kerB′ to x + kerBχ
H = x̄.

Identifying CCi/ kerB′ with CCi in this way we have ϕ̄ : CCi → CχK by

ϕ̄(x̄) = ϕ(x). Since ϕ̄(Ci) = Ψχ
K , we conclude that (CCi, Ci) ∼ (CχK ,Ψ

χ
K).

Let 1 ≤ i, j ≤ n with i 6= j and let a1, a2 ∈ A. For each h ∈ H, we have
(kja2)

−1(kia1)h = a−12 k−1j kia1h /∈ A (since k−1j ki /∈ A), so

B̄χ
H(kia1H, kja2H) =

χ(e)

|H|
∑
h∈H

χ((kja2)
−1(kia1)h) = 0,

since χ vanishes off of A. Therefore, CCi is orthogonal to CCj for i 6= j.

Finally, Ψχ
H = G/H =

⋃
iCi and CχH = C(G/H) =

∑
iCCi. It follows that

CχH is the internal orthogonal direct sum of the spaces CCi, 1 ≤ i ≤ n, and
the proof is complete. �

5. Dihedral group

In this section, we solve Problem 3.3 in the case where G is a dihedral
group and use the results to give a more conceptual proof of an earlier result
(see Corollary 5.3).

Let n be an integer with n ≥ 3. The dihedral group of degree n is the
group G = D2n with presentation

G = 〈r, s | rn = e, s2 = e, srs = r−1〉.

We have G = {rk, srk | 0 ≤ k < n} and the indicated elements are distinct.
In particular, G has order 2n.

The irreducible characters of G are given in the following table [Ser77,
pp. 37–38]:
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rk srk

ψ0 1 1

ψ1 1 −1

ψ2 (−1)k (−1)k (n even)

ψ3 (−1)k (−1)k+1 (n even)

χj 2 cos(2πkj/n) 0 (1 ≤ j < n/2).

Let 1 ≤ j < n/2. The character χj is afforded by the representation
ρj : G→ GL2(C) uniquely determined by

ρj(r) =

[
cos(2πj/n) − sin(2πj/n)
sin(2πj/n) cos(2πj/n)

]
, ρj(s) =

[
1 0
0 −1

]
.

Let Ej = C2 be the CG-module affording ρj .
Let m be a positive integer. The set

Bm = {(cos(2πk/m), sin(2πk/m)) | k ∈ Z} ⊆ R2

is the set of vertices of a regular m-gon. Below, we view Bm as a subset of
C (by identifying R2 with C), but also as a subset of C2, relying on the
context to make the meaning clear.

Denote by ν either 4 or 2 according as n is even or odd (so ν is the number
of linear characters ψj of G). The kernel of a character χ of G is defined by
kerχ = {g ∈ G |χ(g) = χ(e)}; it equals the kernel of the representation of
G affording χ.

5.1 Theorem. Let H be a subgroup of G = D2n.

(i) Let 0 ≤ j < ν and put χ = ψj. If H * kerχ, then CχH = {0}. If
H ⊆ kerχ, then

(CχH ,Ψ) ∼

{
(C, B1), j = 0,

(C, B2), j 6= 0.

(ii) Let 1 ≤ j < n/2 and put χ = χj. We have kerχ = 〈rn′〉, where
n′ = n/ gcd(n, j). Put J = H ∩ Cn, where Cn = 〈r〉. If J * kerχ,
then CχH = {0}. If J ⊆ kerχ, then

(CχH ,Ψ) ∼

{
(C2, Bn′), H * Cn,

(C2, Bn′)⊕ (C2, Bn′), H ⊆ Cn.

Proof. (i) If H * kerχ, then dim CχH = χ(e)(χ, 1)H = 0, so CχH = {0}.
Assume that H ⊆ kerχ. View C as the CG-module affording χ and note
that the inner product on C is G-invariant (cf. proof of (ii)). We have
(χ, 1)H = 1 and H ⊆ Gm1 , where m1 = 1 ∈ C. Moreover, Gm1 = {1} = B1

if j = 0 and Gm1 = {±1} = B2 if j 6= 0, so the claim follows from Theorem
4.2.
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(ii) First, kerχ ⊆ Cn and, for any integer k,

rk ∈ kerχ ⇐⇒ 2 cos(2πkj/n) = 2 ⇐⇒ kj′/n′ = kj/n ∈ Z ⇐⇒ n′|k,

where j′ = j/ gcd(n, j). Therefore, kerχ = 〈rn′〉.
Assume that J * kerχ. We have dim CχH = χ(e)(χ, 1)H ≤ χ(e)(χ, 1)J =

0, the last equality from [Isa94, 6.7]. Therefore, CχH = {0}.
Now assume that J ⊆ kerχ. We have

(5.1.1) (χ, 1)H =
1

|H|
∑
h∈H

χ(h) =
1

|H|
∑
a∈J

χ(a) = 2/|H : J |,

since χ vanishes off of Cn and χ(a) = 2 for all a ∈ J .
Put ρ = ρj . For g ∈ G, the matrix ρ(g) is orthogonal, so for x, y ∈ Ej =

C2, we have (using ∗ for conjugate transpose)

(gx, gy) = (ρ(g)y)∗ρ(g)x = y∗ρ(g)∗ρ(g)x = y∗x = (x, y).

Therefore, the inner product on Ej is G-invariant.
Assume that H * Cn. Then H = JoT , where T = 〈t〉 for some t ∈ G\Cn.

Now T has order two, so (χ, 1)H = 1 by Equation 5.1.1. The element t acts
on R2 ⊆ Ej as a reflection and therefore it fixes some nonzero m1 ∈ Ej .
Since J ⊆ kerχ, every element of J fixes m1 as well, implying that H ⊆ Gm1 .
Since r acts on R2 by counterclockwise rotation through the angle 2πj/n =
2πj′/n′, it follows that Gm1 = CnTm1 = Cnm1 is the set of vertices of a
regular n′-gon. By Theorem 4.2, (CχH ,Ψ) ∼ (Ej , Gm1) ∼ (C2, Bn′), where
the last similarity is obtained by applying a rotation and/or a homothety to
send Gm1 to Bn′ .

Now assume that H ⊆ Cn. Put K = HT ≤ G, where T = 〈s〉. By the
preceding paragraph, (CχK ,Ψ

χ
K) ∼ (C2, Bn′). Therefore, Theorem 4.3 with

A = Cn establishes the claim. �

We end this section by giving an application of Theorem 5.1, which re-
quires the following (geometrically evident) fact.

5.2 Lemma. The set Bm contains a pair of orthogonal vectors if and only
if m is divisible by 4.

Proof. By symmetry Bm contains a pair of orthogonal vectors precisely when
it contains a vector orthogonal to (1, 0), that is, if and only if it contains
(0, 1). But the equation (0, 1) = (cos(2πk/m), sin(2πk/m)) holds for some
integer k precisely when m is divisible by 4, so the claim follows. �

A finite group G is an o-basis group [Hol04] if for each χ ∈ Irr(G) and
each H ≤ G there exists an orthogonal basis of CχH consisting entirely of
standard vectors (such a basis is called an o-basis). If G is an o-basis group,
then it follows from Theorem 3.1 that for every embedding G ↪→ Sn of G
in a symmetric group, the space V ⊗n has an orthogonal basis consisting
entirely of standard symmetrized tensors (relative to the image of G under
the embedding).
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The following result appears in [Hol04, Corollaries 2.2 and 3.2] (see also
[HT92, Corollary 3.3]).

5.3 Corollary. The dihedral group D2n is an o-basis group if and only if
n = 2k for some positive integer k.

Proof. Assume that G = D2n is an o-basis group. Let m be a positive
integer with m > 2 and assume that m divides n. Then 1 ≤ j < n/2,
where j = n/m. Letting H = 〈s〉 and χ = χj in Theorem 5.1 we get
(CχH ,Ψ) ∼ (C2, Bm). Since Ψ contains a pair of orthogonal vectors, so does

Bm, and therefore m is divisible by 4 by Lemma 5.2. It follows that n = 2k

for some positive integer k.
Now assume that n = 2k for some positive integer k and note that n ≥ 4

(since we took n ≥ 3 in the definition of D2n). Let χ ∈ Irr(G) and let
H ≤ G. If χ = ψj for some 0 ≤ j < ν, then dim CχH ≤ 1 by Theorem
5.1, so CχH has an o-basis. Therefore, we may assume that χ = χj for some
1 ≤ j < n/2. Put J = H ∩Cn. If J * kerχ, then CχH is {0} by Theorem 5.1
and it therefore has an o-basis. Assume, on the other hand, that J ⊆ kerχ.
Now n′ is divisible by 4, so Bn′ contains a pair of orthogonal vectors by
Lemma 5.2. It follows from Theorem 5.1 that CχH has an o-basis. Therefore,
G is an o-basis group. �

6. Root system

In [TS12], Torres and Silva construct, for each integer ` ≥ 3, an orbital
subspace having the property that the standard symmetrized tensors in the
subspace form an irreducible root system of type A`. It is natural to ask
which of the irreducible root systems can be realized as the set of standard
symmetrized tensors in some orbital subspace. We show in this section
that it is precisely the simply laced irreducible root systems that can be so
realized.

Let E be an inner product space, let Φ be a subset of E, and denote
by ER the R-span of Φ. We refer to the pair (E,Φ) as an irreducible root
system if Φ ⊆ ER is an irreducible root system in the sense of [Hum72, 9.2,
10.4] and the map C ⊗R ER → E induced by the inclusion map ER ↪→ E
is an isomorphism.

Let E′ be another inner product space and let Φ′ be a subset of E′. We
write (E,Φ) ∼= (E′,Φ′) to mean that there exists a vector space isomorphism
ϕ : E → E′ such that ϕ(Φ) = Φ′ and 〈ϕ(α), ϕ(β)〉 = 〈α, β〉 for all α, β ∈ Φ,
where 〈α, β〉 := 2(α, β)/(β, β). If (E,Φ) is an irreducible root system and
(E,Φ) ∼= (E′,Φ′), then (E′,Φ′) is an irreducible root system as well and the
irreducible root systems Φ ⊆ ER and Φ′ ⊆ E′R are isomorphic in the sense
of [Hum72, 9.2]. It is immediate that (E,Φ) ∼ (E′,Φ′) implies (E,Φ) ∼=
(E′,Φ′).

An irreducible root system (E,Φ) is simply laced if the elements of Φ all
have the same length, that is, ‖α‖ = ‖β‖ for all α, β ∈ Φ. The simply laced
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irreducible root systems are the ones of types A` (` ≥ 1), D` (` ≥ 4), E`
(` = 6, 7, 8). Their corresponding Dynkin diagrams are shown below (each
with ` vertices):

A`: • • · · · •

D`:

•
• • · · · •

•

E`:

•

• • • • · · · •

6.1 Theorem. Let (E,Φ) be an irreducible root system and assume that
m = dimV ≥ 2. The following are equivalent:

(i) There exists n ∈ N and a subgroup G of Sn such that (E,Φ) ∼=
(V χ
γ ,Σ) for some χ ∈ Irr(G) and some γ ∈ Γn,m.

(ii) (E,Φ) is simply laced.

Proof. Assume that (i) holds so that there exists ϕ : E → V χ
γ as in the

definition. For α, β ∈ Φ, we have 〈α, β〉 ∈ Z by a root system axiom, so
(α, β), (ϕ(α), ϕ(β)) ∈ R, implying

(ϕ(α), ϕ(α))

(ϕ(β), ϕ(β))
=
〈ϕ(α), ϕ(β)〉
〈ϕ(β), ϕ(α)〉

=
〈α, β〉
〈β, α〉

=
(α, α)

(β, β)
.

Since the elements of Σ all have the same length (Equation 3.1.1), the same
is true for Φ and (ii) holds.

Now assume that (ii) holds. We claim that there exists a finite group G
such that (E,Φ) ∼ (CχH ,Ψ) for some χ ∈ Irr(G) and some H ≤ G. Once
this is established, (i) will follow from Corollary 3.2 and the proof will be
complete.

If (E,Φ) is of type A1, then Φ = {α,−α} for some α ∈ E, so (E,Φ) ∼
(C, B2) and our claim follows from Theorem 5.1(i) by letting G = D6,
χ = ψ1, and H = {e}. Similarly, if (E,Φ) is of type A2, then Φ is the set
of vertices of a regular hexagon, so (E,Φ) ∼ (C2, B6) and our claim follows
from Theorem 5.1(ii) by letting G = D12, χ = χ1, and H = 〈s〉. Therefore,
we may assume that (E,Φ) is neither of type A1 nor of type A2.

Let G be the Weyl group of Φ ⊆ ER. According to the proof of [Hum72,
p. 53, Lemma B], ER is an absolutely simple RG-module. Therefore, E is
a simple CG-module. The elements of G are reflections of ER, so the inner
product on ER is G-invariant, as is the induced inner product on E.

The map ε : G → C∗ given by ε(σ) = (−1)l(σ) is a homomorphism,
where l(σ) is the length of σ [Hum72, p. 54, Exercise 6]. Denote by Cε the
corresponding CG-module. The tensor product Eε = Cε ⊗C E is a simple
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CG-module. After identifying the vector space Eε with E as usual, we can
describe the action of G on Eε as being given by the formula σ · x = ε(σ)σx
(σ ∈ G, x ∈ Eε). The irreducible character of G afforded by Eε is χ = εψ,
where ψ is the character of G afforded by E.

Let 4 be a base for Φ ⊆ ER. In the Dynkin diagram of 4 there exists
a vertex α ∈ 4 that is adjacent to precisely one other vertex β ∈ 4 (since
(E,Φ) is not of type A1). Then σαα = −α, σαβ = α + β, and σαγ = γ for
γ ∈ 4\{α, β}, where σα is the reflection in the hyperplane orthogonal to α.
Therefore, χ(σα) = 2− `, where ` = |4|.

Put H = 〈σα〉 ≤ G. We have σα · α = ε(σα)σαα = α, so H ⊆ Gα. Also,
(χ, 1)H = 1

|H|(χ(1) + χ(σα)) = 1
2(`+ (2− `)) = 1.

In general, the Weyl group G acts transitively on the set of those roots
having a fixed length [Hum72, p. 53, Lemma C]. Therefore, since (E,Φ)
is simply laced, we have Gα = Φ, implying G · α ∪ −G · α = Φ. We are
assuming that Φ is neither of type A1 nor of type A2, so there exists a vertex
γ ∈ 4 of the Dynkin diagram of 4 that is not adjacent to α. Therefore,
σ = σασγ has length two and −α = ε(σ)σα = σ · α ∈ G · α, so Φ = G · α.

By Theorem 4.2 with M = Eε and m1 = α, we get (E,Φ) ∼ (CχH ,Ψ).
This establishes our claim and finishes the proof. �

6.2 Remark. Let the notation be as in Theorem 6.1. In the proof that
(ii) implies (i), after reducing to the case where the irreducible root system
is neither of type A1 nor of type A2, G is taken to be the image of the
Weyl group of Φ ⊆ ER under the Cayley embedding (so G ≤ S|G|). In view
of Theorem 3.1, it is sufficient though for G to be isomorphic to the Weyl
group of Φ ⊆ ER and have the property that H = Gγ for some γ ∈ Γn,m.
In the case that (E,Φ) is of type A`, the Weyl group can be identified with
G = Sn (viewed as a subgroup of itself), where n = ` + 1, and then the
proof of Theorem 6.1 shows that we can let H = 〈(1, 2)〉, so that H = Gγ ,
where γ = (1, 1, 2, 3, . . . , `) (this requires m = dimV ≥ `). The resulting
orbital subspace containing a copy of Φ is then the same as that constructed
in [TS12, Theorem 14].
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