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1. Global dimension

1.1. (Projective dimension)

Let A be an R-module. The projective dimension of A, written pd(A), is the
least nonnegative integer d for which there exists a projective resolution of A of the
form

0→ Pd → · · · → P1 → P0 → A→ 0,

unless there is no such resolution, in which case pd(A) =∞.

For instance, A is projective if and only if pd(A) = 0. And if R = Z, then
pd(Z2) = 1 (0→ 2Z→ Z→ Z2 → 0).

Theorem. For given A and d, the following are equivalent:

(i) pd(A) ≤ d,

(ii) ExtnR(A,B) = 0 for all n > d and all B,

(iii) Extd+1
R (A,B) = 0 for all B,

(iv) if 0 → Md → Pd−1 → · · · → P1 → P0 → A → 0 is exact with each Pi
projective, then Md is projective.

When d = 0, the equivalence (i) ⇔ (iii) says that A is projective if and only if
Ext1R(A,B) = 0 for all B, which is the theorem in I-12.3.
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The proof of this theorem requires the following lemma, which is proved using the
long exact Ext sequence and the technique of “dimension shifting.”

Lemma. If
0→Mn → Pn−1 → · · · → P1 → P0 → A→ 0

(n ≥ 1) is exact with each Pi projective, then Exti−nR (Mn, B) ∼= ExtiR(A,B) for
every R-module B and every i ≥ n+ 1.

Here is an application of the theorem. If m is an integer and R = Zm2 , then the R-
module Zm has infinite projective dimension by (i)⇒(iv) since Zm is not projective
and there is a resolution

0→ Zm → Zm2 → Zm2 → · · · → Zm2 → Zm → 0

of arbitrary length with Zm → Zm2 the natural monomorphism and the other maps
multiplication by m.

1.2. (Injective dimension)

Let B be an R-module. The injective dimension of B, written id(B), is the least
nonnegative integer d for which there exists an injective resolution of B of the form

0→ B → E0 → E1 → · · · → Ed → 0,

unless there is no such resolution, in which case id(B) =∞.
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For instance, if B is injective, then id(B) = 0, and if R = Z, then id(Z) = 1
(0→ Z→ Q→ Q/Z→ 0).

Theorem. For given B and d, the following are equivalent:

(i) id(B) ≤ d,

(ii) ExtnR(A,B) = 0 for all n > d and all A,

(iii) Extd+1
R (A,B) = 0 for all A,

(iv) if 0 → B → E0 → E1 → · · · → Ed−1 → Md → 0 is exact with each Ei

injective, then Md is injective.

The proof of this theorem is almost identical to the proof of the theorem in the
previous section.

1.3. (Global dimension)

The left global dimension of the ring R, written lgd(R), is the supremum of the
set of projective dimensions of all (left) R-modules:

lgd(R) = sup{pd(A) |A ∈ R-mod}

For example, lgd(Z) = 1 since pd(Z2) = 1 and for any Z-module A, there exists an
exact sequence 0→ F1 → F0 → A→ 0 with Fi free.
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Theorem. The following numbers are equal:

(i) lgd(R),

(ii) sup{id(B) |B ∈ R-mod},

(iii) sup{pd(R/I) | I is a left ideal of R},

(iv) sup{d | ExtdR(A,B) 6= 0 for some A,B ∈ R-mod}.

There is a corresponding notion of “right global dimension” of R, written rgd(R).
It has been shown that for every 1 ≤ m,n ≤ ∞ there exists a ring R such that
lgd(R) = m and rgd(R) = n (Jategaonkar, 1969). On the other hand, if R is both
left and right Noetherian, then lgd(R) = rgd(R).

1.4. (Semisimple ring)

In this section, we show that the class of rings with zero global dimension (either
left or right) is precisely the class of semisimple rings.

An R-module is simple if it has no nonzero proper submodules. An R-module is
semisimple if it is a direct sum of simple submodules.

Theorem. An R-module A is semisimple if and only if every exact sequence
0→ B → A→ C → 0 splits.
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A ring is semisimple if it is semisimple as a left module over itself (or equivalently,
as a consequence of the next theorem and its identical right counterpart, as a right
module over itself).

Theorem (Wedderburn). R is semisimple if and only if R ∼=
∏t
i=1 Matni(Di),

for some t, ni, and division rings Di.

If R is semisimple, then the t, ni and Di in the theorem are uniquely determined by
R. Each ring Matni(Di) is simple (i.e., has no nonzero proper two-sided ideals), so a
semisimple ring is a finite direct product of simple rings. Conversely, if R is a finite
direct product of simple left (or right) Artinian rings, then R is semisimple. (A ring
is left Artinian if its left ideals satisfy the descending chain condition, or, equiva-
lently, if each nonempty collection of its left ideals has a minimal element, that is,
a left ideal that does not properly contain any other left ideal in the collection.)

Maschke’s theorem says that if G is a finite group and K is a field of characteristic
not a divisor of |G|, then the group ring KG is semisimple.

Theorem. The following are equivalent:

(i) R is semisimple,

(ii) lgd(R) = 0,

(iii) every R-module is injective,

(iv) every R-module is projective,
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(v) every short exact sequence of R-modules splits.

We get four further equivalent statements by using the “right” versions of (ii)
through (v).

2. Tor dimension

2.1. (Pontryagin dual)

Let B be an R-module. The Pontryagin dual of B is the right R-module

B∗ := HomZ(B,Q/Z)

with action given by (fr)(b) = f(rb). A similar definition yields a left R-module
A∗ for every right R-module A.

Lemma. Let A,B and C be R-modules.

(i) If 0 6= b ∈ B, then there exists f ∈ B∗ such that f(b) 6= 0.

(ii) A→ B → C is exact if and only if C∗ → B∗ → A∗ is exact.

An R-module A is finitely presented if there exists an exact sequence Rn
α→

Rm → A → 0 for some positive integers m and n. In this situation, A has the
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presentation

A = 〈e1, . . . , em |
∑
i

αijei, 1 ≤ j ≤ n〉,

which denotes the free R-module on the set of elements to the left of the vertical
bar ( | ) modulo the submodule generated by the set of elements to the right (the
latter of which is the image of α).

Theorem. Let AR, RB, and RC be modules as indicated.

(i) The map σ : (A⊗RB)∗ → HomR(A,B∗) given by σ(f)(a)(b) = f(a⊗ b) is an
isomorphism that is natural in both A and B.

(ii) The map τ : B∗ ⊗R C → HomR(C,B)∗ given by τ(f ⊗ c)(g) = f(g(c)) is
natural in both B and C. It is an isomorphism if C is finitely presented.

Theorem. Every finitely presented flat R-module is projective.

Theorem. Let B be an R-module. The following are equivalent:

(i) B is flat,

(ii) B∗ is injective,

(iii) the map I ⊗R B → R ⊗R B induced by inclusion is injective for every right
ideal I of R,
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(iv) TorR1 (R/I,B) = 0 for every right ideal I of R.

2.2. (Flat dimension)

Let B be an R-module. The flat dimension of B, written fd(B), is the least
nonnegative integer d for which there exists a flat resolution of B of the form

0→ Qd → · · · → Q1 → Q0 → B → 0,

unless there is no such resolution, in which case fd(B) =∞.

For instance, B is flat if and only if fd(B) = 0. If R = Z, then fd(Z2) = 1, since
0→ 2Z→ Z→ Z2 → 0 is a flat resolution of Z2 (recalling that projective ⇒ flat)
and Z2 is not flat since · ⊗Z Z2 does not preserve exactness of 0→ Z→ Q.

Since a projective resolution is a flat resolution, it follows that pd(B) ≥ fd(B). One
can have strict inequality here since the Z-module Q is flat (I-10.4) so fd(Q) = 0,
but it is not projective (a nonzero submodule of a free Z-module cannot be divisible)
so pd(Q) 6= 0.

Theorem. For given B and d, the following are equivalent:

(i) fd(B) ≤ d,

(ii) TorRn (A,B) = 0 for all n > d and all A,

(iii) TorRd+1(A,B) = 0 for all A,
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(iv) if 0 → Md → Qd−1 → · · · → Q1 → Q0 → B → 0 is exact with each Qi flat,
then Md is flat.

When d = 0, the equivalence (i)⇔ (iii) says thatB is flat if and only if TorR1 (A,B) =
0 for all A, which is a theorem in I-12.3.

There is a similar notion of flat dimension of a right R-module A (formally, one
could define fd(A) to be the flat dimension of the (left) Rop-module A).

2.3. (Tor-dimension)

The Tor dimension of the ring R, written td(R), is the supremum of the set of
flat dimensions of all (left) R-modules:

td(R) = sup{fd(B) |B ∈ R-mod}

For example, td(Z) = 1 since fd(Z2) = 1 and for any Z-module A, there exists an
exact sequence 0→ F1 → F0 → A→ 0 with Fi free (hence flat).

Theorem. The following numbers are equal:

(i) td(R),

(ii) sup{fd(A) |A ∈mod-R},

(iii) sup{fd(R/I) | I is a left ideal of R},
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(iv) sup{fd(R/I) | I is a right ideal of R},

(v) sup{d | TorRd (A,B) 6= 0 for some A ∈mod-R, B ∈ R-mod}.

Since fd(B) ≤ pd(B) for an R-module B, it follows that td(R) ≤ lgd(R), and,
similarly, td(R) ≤ rgd(R).

Theorem.

(i) If R is left Noetherian, then td(R) = lgd(R).

(ii) If R is right Noetherian, then td(R) = rgd(R).

In particular, if R is (left and right) Noetherian, then lgd(R) = rgd(R).

We have seen that R is semisimple if and only if its left (or right) global dimension
is zero (see theorem in 1.4). The following characterization of semisimple ring
using Tor-dimension is therefore a direct consequence of the preceding theorem
(and Wedderburn’s theorem to see that a semisimple ring is Noetherian).

Corollary. The ring R is semisimple if and only if it is left Noetherian and
td(R) = 0.

2.4. (Von Neumann regular ring)

In this section, we show that the class of rings with zero Tor dimension is precisely
the class of von Neumann regular rings.
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The ring R is von Neumann regular if for each a ∈ R there exists x ∈ R such
that axa = a (one regards x as a “weak inverse” of a). For example, if R is a
division ring, then R is von Neumann regular.

Exercise. Let V be a vector space over a division ring D. Prove that the ring
EndD(V ) is von Neumann regular.

The main theorem requires a definition and a lemma. An element e of R is idem-
potent if e2 = e. Both 0 and 1 are idempotent. If e ∈ R is idempotent, then
so is 1 − e, and we get the left ideal direct sum decomposition R = Re+̇R(1 − e)
(which is a proper decomposition if e 6= 0, 1). Conversely, if R = I+̇J with I and
J left ideals of R and one writes 1 = e + f with e ∈ I and f ∈ J , then e and f
are idempotent. (Indeed, e = e1 = e2 + ef and since e, e2 ∈ I and ef ∈ J , we get
ef = 0 so that e2 = e. Similarly for f .)

Lemma. Assume that R is von Neumann regular. Let I be a finitely generated
left ideal of R.

(i) I = Re for some idempotent element e of R, so that R = I+̇R(1− e).

(ii) I and R/I are projective R-modules.

Theorem. The following are equivalent:

(i) R is von Neumann regular,
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(ii) td(R) = 0,

(iii) every R-module is flat,

(iv) R/I is projective for every finitely generated left ideal I of R.

Corollary. R is semisimple if and only if it is von Neumann regular and left
Noetherian.

EndD(V ) (as in the exercise above) is von Neumann regular, but it is not semisimple
if V is infinite dimensional (by Wedderburn’s theorem, for example). This example
also shows that one can have lgd(R) strictly greater than td(R).
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3. Spectral sequence

3.1. (Definition)

A (homology) spectral sequence E consists of the following:

(i) for each integer r ≥ 0 a doubly indexed family of R-modules {Erpq} (p, q ∈ Z);

(ii) R-homomorphisms drpq : Erpq → Erp−r,q+r−1 such that drp−r,q+r−1d
r
pq = 0 for

all p, q, r;

(iii) isomorphisms Er+1
pq → ker drpq/ im drp+r,q−r+1 for each p, q, r.

(A cohomology spectral sequence is defined similarly, except with arrows re-
versed.)
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For each r, the family {Erpq} is the rth sheet of the sequence. It is convenient to
locate the term Erpq of the rth sheet at the point (p, q) of the plane (see figure).

The maps drpq are differentials. They point downward when r = 0, to the left
when r = 1, and up and to the left for r > 1 (as in the figure). Their lengths
increase with r (for r > 0).

The total degree of the term Erpq is p+q. Terms of identical total degree lie along
lines of slope −1 (red).

The differentials form chain complexes along the lines with slope −(r − 1)/r. The
rth sheet consists of the homology modules of the complexes in the (r− 1)st sheet.
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In particular, each term Erpq is a subquotient (i.e., a quotient of a submodule) of
the corresponding term on the preceding sheet:

In particular, if any term Erpq is zero, then the corresponding terms on the subse-
quent sheets are also zero.

If the modules E0
pq on the initial sheet are zero whenever p < 0 or q < 0, then E is

a first quadrant spectral sequence. In this case, for each pair (p, q), there is a
large enough r such that the differential leaving Erpq lands in the second quadrant
and the differential arriving at Erpq comes from the fourth quadrant, so that

Erpq = Er+1
pq = Er+2

pq = · · · .

This module is denoted E∞pq .

More generally, the spectral sequence E is bounded if, for each integer n, there
exist only finitely many nonzero terms E0

pq of total degree n (e.g., a first quadrant
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spectral sequence is bounded). Since differentials decrease total degree by one and
increase in length with r, a bounded spectral sequence has the property that for
each pair (p, q), the terms Erpq eventually stabilize as above, so that E∞pq is defined.

The bounded spectral sequence E converges to the family {Hn} of R-modules if
for each n there exists a filtration

· · ·Fp−1Hn ≤ FpHn ≤ Fp+1Hn · · ·

of Hn with FsHn = 0 and FtHn = Hn for some s ≤ t and, for each pair (p, q) there
exists an isomorphism

βpq : E∞pq → FpHp+q/Fp−1Hp+q.

In this case, we write
E0
pq ⇒ Hp+q.

Example. (Convergent first quadrant spectral sequence)

Let E be a first quadrant spectral sequence and assume that E0
pq ⇒ Hp+q. Fix

a nonnegative integer n. According to the definition of convergence, Hn has a
descending sequence of submodules with successive quotients that can be read off
by going to a sheet containing each E∞pq with p+q = n (such a sheet exists), starting
on the x-axis at position n and proceeding northwest to get

E∞n0, E
∞
n−1,1, E

∞
n−2,2, . . . , E

∞
0,n.
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3.2. (Spectral sequence of a filtered complex)

Let C be a chain complex of R-modules. For each n, let C ′n be a submodule of
Cn and assume that dn(C ′n) ⊆ C ′n−1 for each n. Then C ′ is a chain complex with
differentials induced by the differentials dn; it is called a subcomplex of C, written
C ′ ≤ C (or C ≥ C ′).

A filtration of C is a family {Fp(C)}p∈Z of subcomplexes of C with Fp(C) ≥
Fp−1(C) for each p. Such a filtration is bounded if for each n there exist s ≤ t
such that Fs(C) = 0 and Ft(C) = C.

Theorem. Let {Fp(C)} be a bounded filtration of the chain complex C. There
exists a spectral sequence E with differentials induced by the differentials of C such
that

E0
pq = Fp(Cp+q)/Fp−1(Cp+q)⇒ Hp+q(C).

3.3. (Spectral sequence of a bicomplex)

A bicomplex C is a doubly-indexed family {Cpq}p,q∈Z of R-modules together with
maps dhpq : Cpq → Cp−1,q and dvpq : Cpq → Cp,q−1 such that

dhdh = 0, dvdv = 0, dvdh + dhdv = 0.

The module Cpq is visualized as being located at the point (p, q) of the plane.
The maps dh are horizontal and point to the left, while the maps dv are vertical
and point down. The last condition says that the squares are anticommutative:
dvdh = −dhdv.
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The total complex Tot(C) of the bicomplex C is the chain complex with nth term

Tot(C)n =
∐

p+q=n

Cpq

and with differential dn induced by the map on Cpq given by dh + dv. One checks
using the properties of dh and dv that d2n = 0 as required.

There are two natural filtrations associated with the total complex, given by

IFp(Tot(C))n =
∐
i≤p

Ci,n−i

and
IIFp(Tot(C))n =

∐
i≤p

Cn−i,i.

We give a description of the first few sheets of the corresponding spectral sequences,
denoted IE and IIE, respectively:

IE0
pq = IFp(Tot(C))n/

IFp−1(Tot(C))n ∼= Cpq (n = p+ q).

The differential d0pq is induced by the differential dn = dhpq + dvpq, and since dhpq
maps into IFp−1(Tot(C))n it follows that d0pq = dvpq (identifying IE0

pq with Cpq).
Therefore, the next sheet of the spectral sequence is obtained by taking homology
of the bicomplex C in the vertical direction, which is what the following notation
signifies:

IE1
pq = Hv

pq(C) = ker dvpq/ im dvp,q+1.
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Again, the differential d1pq is induced by the differential dn = dhpq + dvpq, but now

the map induced by dvpq is zero, so we have d1pq = d̄hpq where the bar denotes the
induced map. Therefore, the next sheet of the spectral sequence is obtained by
taking homology relative to maps induced by the horizontal maps of the complex
C, which again we use suggestive notation for:

IE2
pq = Hh

pq(H
v(C)) = ker d̄hpq/ im d̄hp+1,q.

The description of the first few sheets of IIE is very similar, except that there is a
reversal of indices that occurs:

IIE0
pq = IIFp(Tot(C))n/

IIFp−1(Tot(C))n ∼= Cqp (n = p+ q),

IIE1
pq = Hh

qp(C) (homology of C using horizontal maps),

IIE2
pq = Hv

qp(H
h(C)) (homology of sheet 1 using maps induced by

vertical maps of C).

According to the previous section, both of these spectral sequences converge to the
homology of the total complex if the filtrations are bounded, which is the case if
the bicomplex C is bounded (same definition as for bounded spectral sequence).

Theorem. If the bicomplex C is bounded, then

IE2
pq = Hh

pq(H
v(C))⇒ Hn(Tot(C)),

and
IIE2

pq = Hv
qp(H

h(C))⇒ Hn(Tot(C)),
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where n = p+ q.

The meaning of the notation is that the spectral sequence IE converges toHn(Tot(C))
and its second sheet (p, q) term is as indicated. Similarly for IIE.

3.4. (Sign trick)

Let {Cpq}p,q∈Z be a doubly indexed family of R-modules and let δhpq : Cpq → Cp−1,q
and δvpq : Cpq → Cp,q−1 be maps such that

δhδh = 0, δvδv = 0, δvδh = δhδv

(i.e., C is a chain complex of chain complexes). The family C becomes a bicomplex
if one uses the following sign trick to define the maps:

dhpq = δhpq, dvpq = (−1)pδvpq.

(The sign (−1)p changes the squares from commutative to anticommutative.)

4. Applications of spectral sequence

4.1. (Balancing Tor)

We defined the functor TorRn (A, · ) to be Ln(A⊗R ·), so that

TorRn (A,B) = Hn(A⊗R Q)
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where Q→ B → 0 is a projective resolution of B. We stated that we could just as
well have defined

TorRn (A,B) = Hn(P ⊗R B)

where P → A→ 0 is a projective resolution of A. Our first application of a spectral
sequence is the proof of the equivalence of these definitions.

Theorem. With the notation above, Hn(A⊗R Q) ∼= Hn(P ⊗R B).

Proof. (Sketch) Put Cpq = Pp⊗RQq and use the sign trick to view C as a bicom-
plex. Using the previous section, we find that

IE2
pq
∼=

{
Hn(P ⊗R B) q = 0,

0 q 6= 0

(n = p+ q). In particular, IE∞pq = IE2
pq so that Tot(C)n ∼= Hn(P ⊗R B). Similarly,

using IIE, we find that Tot(C)n ∼= Hn(A⊗R Q) and the claim follows.

A similar proof, using a cohomology spectral sequence, shows that the two ways to
compute ExtnR(A,B) agree.

4.2. (Künneth spectral sequence)

Let P be a chain complex of flat right R-modules that is bounded below (i.e., there
exists an integer N such that Pn = 0 for all n < N). Let M be an R-module. The
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following result relates the homology modules of the complex P ⊗RM to those of
the complex P .

Theorem. There exists a bounded spectral sequence E such that

E2
pq = Torp(Hq(P ),M)⇒ Hn(P ⊗RM),

where n = p+ q.

E is called the Künneth spectral sequence.

Corollary. Let P be a chain complex of flat right R-modules and assume that
im dn is flat for each n. For each n there exists an exact sequence

0→ Hn(P )⊗RM → Hn(P ⊗M)→ TorR1 (Hn−1(P ),M)→ 0.

This result is known as the universal coefficient theorem of homology. There
is a corresponding result involving Ext1, which is proved using a cohomology analog
of the Künneth spectral sequence. Both results have generalizations referred to as
the “Künneth formulas.”

Note that if M is flat, then the result says that Hn(P ⊗M) ∼= Hn(P )⊗RM (though
this statement is actually required in the proof so that an independent argument
is required).

4.3. (Change of rings)



Global dimension

Tor dimension

Spectral sequence

Applications of spectral . . .

Cohomology of groups

Derived category

JJ II

J I

Page 24 of 49

Go Back

Full Screen

Let ϕ : R→ S be a ring homomorphism. We use this homomorphism to view any
S-module B as an R-module: rb = ϕ(r)b (r ∈ R, b ∈ B).

Let A be a right R-module. Since S is an (R,S)-bimodule, the tensor product
A⊗R S is a right S-module with action (a⊗ s)s′ = a⊗ (ss′) (a ∈ A, s, s′ ∈ S). If P
is a chain complex, then each term of the complex P ⊗R S is a right S-module and
the differentials are S-homomorphisms. Therefore, TorRq (A,S) is a right S-module
for each q.

Theorem. Let ϕ : R → S be a ring homomorphism and let AR and SB be
modules as indicated. There exists a first quadrant spectral sequence E such that

E2
pq = TorSp (TorRq (A,S), B)⇒ TorRn (A,B),

where n = p+ q.

There is a corresponding theorem involving Ext.

Corollary. Let ϕ : R→ S be a ring homomorphism. For any S-module B we
have

fdR(B) ≤ fdS(B) + fdR(S).

(The subscripts indicate the rings to be used in the definition of flat dimension.)
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5. Cohomology of groups

5.1. (Group extension problem)

Let G and A be groups. An extension of G by A is a group E having a normal
subgroup isomorphic to A with corresponding quotient isomorphic to G.

An important unsolved problem is the classification of all such extensions for ar-
bitrary finite groups G and A. If this problem were solved, then in a sense one
would know all finite groups. In fact, for this, one would need only classify all such
extensions with A simple. Indeed, arguing by induction on the group order, a given
nontrivial finite group E has a simple normal subgroup (known by the Classifica-
tion Theorem) with corresponding quotient of order less than |E| (hence known by
the induction hypothesis), so the group E is known by the assumed solution to the
extension problem.

We show that, under the assumption that A is abelian, the essentially distinct
extensions of G by A are in one-to-one correspondence with a certain Ext group.
This leaves (for the abelian A case) the problem of computing that Ext group, and
for this standard techniques in homological algebra can be applied.

5.2. (Cohomology groups)

Let G be a group. A G-module is an abelian group A together with a map
G×A→ A, written (g, a) 7→ g · a, such that for all g, h ∈ G and a, b ∈ A
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(i) 1 · a = a (1 is the identity element of G),

(ii) (gh) · a = g · (h · a), and

(iii) g · (a+ b) = g · a+ g · b.

(Properties (i) and (ii) say that the map gives an action of G on A making A a
G-set.)

A G-module A gives rise to a homomorphism ϕ : G→ End(A) given by ϕ(g)(a) =
g · a. Conversely, such a homomorphism gives rise to a G-module structure on A
by putting g · a = ϕ(g)(a).

A G-module A is trivial if g ·a = a for all g ∈ G and a ∈ A. Any abelian group can
be viewed as a trivial G-module by using this action. The G-module A is trivial
if and only if the corresponding homomorphism ϕ : G → End(A) is the trivial
homomorphism.

For us, the main example of a G-module arises in connection with an extension of
G. Let E be an extension of G by the abelian group A, so that A is identified with
a normal subgroup of E and G is identified with E/A. For g = eA ∈ G and a ∈ A,
we put

g · a = ea := eae−1.

One shows that the action is independent of the chosen coset representative (and
using this fact, we write unambiguously ga for ea). The resulting G-module A is
trivial if and only if A is contained in the center of E. In this case E is a central
extension of G by A.
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We use the new language to reformulate the statement of the extension problem.
Let A be a G-module. An extension E of G by A corresponds to an exact sequence
of groups

0→ A→ E → G→ 1. (*)

(We write 0 on the left since we are viewing A as an additive group.) Two extensions
E and E′ of G by A are equivalent if there exists a homomorphism ϕ : E → E′

such that the following diagram is commutative:

0 // A //

1
��

E //

ϕ
��

G //

1
��

0

0 // A // E′ // G // 0

.

In this case, the five lemma shows that ϕ is in fact an isomorphism.

The extension (*) respects the G-module structure of A if g · a = ga for each
g ∈ G and a ∈ A. A solution to the extension problem would be a determination
of the set e(G,A) of equivalence classes of those extensions of G by A that respect
the G-module structure of A.

Let ZG be the group ring of G over Z. Thus ZG is the free abelian group on G
with multiplication induced by the group operation of G so that(∑

g∈G
αgg

)(∑
h∈G

βhh

)
=
∑
g,h∈G

αgβh(gh).

If A is a G-module, then the action of G on A extends linearly to give a ZG-module
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structure on A: (∑
g∈G

αgg

)
a =

∑
g∈G

αgg · a.

Conversely, any ZG-module can be viewed as a G-module by restricting the scalars
from ZG to G. If A is a trivial G-module, then (

∑
αgg)a = (

∑
αg)a (αg ∈ Z,

a ∈ A).

Let A be a G-module. For a nonnegative integer n, the nth cohomology group
of G with coefficients in A is

Hn(G,A) := ExtnZG(Z, A),

where Z is viewed as a trivial G-module. We will show that e(G,A) is in one-
to-one correspondence with the set H2(G,A). We will also give interpretations of
H0(G,A) and H1(G,A).

5.3. (Standard resolution)

To facilitate the interpretations of Hn(G,A), we introduce a particular free resolu-
tion of the trivial ZG-module Z.

Let Bn be the free ZG-module on the set {[ g1 | g2 | · · · | gn ] | 1 6= gi ∈ G}. Extend
the meaning of the symbol [ g1 | g2 | · · · | gn ] by defining it to be 0 if gi = 1 for some
i.

By convention, B0 is the free ZG-module on the singleton set {[ ]} and therefore
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identifies with ZG. The map d0 : B0 → Z given by
∑
αgg 7→

∑
αg is a ZG-

epimorphism called the augmentation map of ZG.

For n > 0, let dn : Bn → Bn−1 be the ZG-homomorphism determined by the
formula

dn([ g1 | g2 | · · · | gn ]) = g1[ g2 | · · · | gn ]

+
n−1∑
i=1

(−1)i[ g1 | · · · | gigi+1 | · · · | gn ]

+ (−1)n [ g1 | · · · | gn−1 ].

Theorem. The chain complex B → Z → 0 is a free resolution of the trivial
ZG-module Z.

This is the standard resolution of Z. (It is also known as the bar resolution of
Z, presumably due to the bars | in the notation of the generators of Bn.)

Let A be a G-module. Using the standard resolution, we have that Hn(G,A) is the
nth cohomology group of the chain complex

0 // HomZG(B0, A)
d1
∗
// HomZG(B1, A)

d2
∗
// HomZG(B2, A)

d3
∗
// · · ·

The group HomZG(Bn, A) identifies with the group Cn(G,A) of all functions f :
Gn → A such that f(g1, . . . , gn) = 0 if gi = 1 for some i, where Gn = G× · · · ×G
(n factors). (We view G0 as a singleton set and for f ∈ C0(G,A) we write f() ∈ A
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for the image of the single element.) The elements of Cn(G,A) are n-cochains.
For f ∈ Cn(G,A), we have

dn+1
∗(f)(g0, g1, . . . , gn) = g0 · f(g1, . . . , gn)

+

n∑
i=0

(−1)i+1 f(g0, . . . , gigi+1, . . . , gn)

+ (−1)n+1 f(g0, . . . , gn−1)

The elements of Zn(G,A) := ker dn+1
∗ are n-cocycles and the elements ofBn(G,A) :=

im dn
∗ are n-coboundaries. By definition, Hn(G,A) = Zn(G,A)/Bn(G,A).

5.4. (Extension and H2(G,A))

Let A be a G-module and let

0 // A // E
π // G // 0

be an extension ofG byA that respects theG-module structure ofA. Let σ : G→ E
be a section of π, that is, πσ = 1G (σ need not be a homomorphism). Assume that
σ(1) = 1.

For g, h ∈ G, we have
π(σ(g)σ(h)) = gh = π(σ(gh))

so that
σ(g)σ(h) = [g, h]σ(g)σ(h)
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for some [g, h] ∈ A (we have identified A with its image). The function [ , ] =
[ , ]E,σ : G×G→ A is the factor set of the extension relative to σ.

Lemma. A function [ , ] : G×G→ A is a factor set (of some extension relative to
some section) if and only if it is a 2-cocycle, that is, if and only if for all g, h, k ∈ G,

(i) [g, 1] = 0 and [1, g] = 0,

(ii) g · [h, k]− [gh, k] + [g, hk]− [g, h] = 0.

Recall that e(G,A) is the set of equivalence classes of those extensions of G by A
that respect the G-module structure of A.

Theorem. There is a one-to-one correspondence e(G,A)↔ H2(G,A).

A bijection Φ : e(G,A)↔ H2(G,A) is given by Φ(Ē) = ¯[ , ]E,σ (any σ), where the

bars denote classes. The lemma shows that this function maps into H2(G,A) and
is surjective, so one just needs to check that it is well-defined and injective.

5.5. Schur-Zassenhaus Theorem

Let G and A be groups and let ϕ : G → Aut(A), g 7→ ϕg, be a homomorphism
(called an action of the group G on the group A). The set A×G is a group with
product given by

(a, g)(b, h) = (aϕg(b), gh).
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(The identity element is (1, 1) and the inverse of (a, g) is (ϕg−1(a−1), g−1).) This
group is the semidirect product of A and G with respect to the action ϕ, written
Aoϕ G. (When ϕ is trivial, this is just the direct product.)

The usual injections identify A and G with subgroups of the semidirect product
E = Aoϕ G. . Moreover, A / E (which is what the notation is meant to indicate)
and

(i) AG = E,

(ii) A ∩G = 1.

Conversely, if E is a group with a subgroup A and a normal subgroup G satisfying
these two properties, then E is the (internal) semidirect product of A and G,
written AoG. In this case, ϕ : G→ Aut(A) given by ϕg(a) = gag−1 is an action
of G on A and E is isomorphic to Aoϕ G.

Let G and A be groups. An extension

0 // A // E
π // G // 0

of G by A is split if there exists a homomorphism σ : G→ E such that πσ = 1G.
In this case σ is an injection and we use it to identify G with its image in E.
Identifying A with its image as well, we then have E = AG and A ∩G = 1 so that
E = AoG.

Theorem (Schur-Zassenhaus). If G and A are finite groups with (|G|, |A|) = 1,
then every extension of G by A is split.
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The proof depends on the proof of the special case where A is abelian, which we
now sketch. Let G and A be finite groups with A abelian.

Lemma. If A is a G-module, then

(i) |G|Hn(G,A) = 0 (n 6= 0),

(ii) |A|Hn(G,A) = 0.

Let E be an extension of G by A and assume that (|G|, |A|) = 1. The extension
induces a G-module structure on A. Since a|G| + b|A| = 1 for some integers a
and b, it follows from the lemma that H2(G,A) = 0. By the theorem of 5.4, E is
equivalent to an extension E′ with trivial factor set relative to a section σ. The
definition of factor set shows that σ is a homomorphism so that the extension E′

splits. Since any extension equivalent to a split extension is also split, the special
case of the Schur-Zassenhaus theorem follows.

5.6. (Fixed point set and H0(G,A))

Let G be a group and let A be a G-module. The fixed point set of A is

AG := {a ∈ A | g · a = a for all g ∈ G}

It is a G-submodule of A. In fact it is the unique maximal trivial G-submodule of
A.
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The fixed point functor ·G is the functor from the category of G-modules to the
category of abelian groups (or trivial G-modules) that sends a G-module A to the
abelian group AG and sends a G-homomorphism f : A→ B to the restriction f |AG .

The map ηA : HomZG(Z,A) → AG given by ηA(f) = f(1) defines an equivalence
of functors HomZG(Z, · ) ' ·G. This provides an interpretation of the cohomology
group H0(G,A).

Corollary. H0(G,A) ∼= AG.

5.7. (Automorphisms of extensions and H1(G,A))

Let G be a group and let A be a G-module. A function δ : G → A is a 1-cocycle
(that is, an element of Z1(G,A)) if and only if

δ(gh) = g · δ(h) + δ(g)

for each g, h ∈ G (see 5.3 and note that the requirement δ(1) = 0 follows from this
formula), and it is a 1-coboundary (that is, an element of B1(G,A)) if and only if
there exists some a ∈ A such that

δ(g) = g · a− a

for all g ∈ G (see 5.3 and note that we have written a for f()).

Often, a 1-cocycle is referred to as a derivation (or crossed homomorphism)
from G to A, and a 1-coboundary is then called an inner derivation (or prin-
cipal crossed homomorphism). With this terminology, the cohomology group
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H1(G,A) = Z1(G,A)/B1(G,A) can be described as the group of derivations from
G to A modulo the group of inner derivations.

Let
0 // A // E

π // G // 0

be an extension of G by A that respects the G-module structure on A. Denote by
Aut′(E) the group of those automorphisms ϕ of E for which the following diagram
is commutative:

0 // A //

1
��

E //

ϕ

��

G //

1
��

0

0 // A // E // G // 0.

Let Inn′(E) denote the set {ιa | a ∈ A}, where ιa is the inner automorphism of
E given by ιa(e) = a−1ea. Then Inn′(E) is a normal subgroup of Aut′(E) (a

consequence of the theorem below). Let Aut′(E) denote the corresponding quotient.

Let ϕ ∈ Aut′(E) and let σ : G→ E be a section of π (so that πσ = 1) and assume
that σ(1) = 1. For each g ∈ G there exists a unique δ(g) ∈ A such that

ϕ(σ(g)) = δ(g)σ(g).

This defines a function δ = δϕ : G→ A with δ(1) = 0 (the operation in A is written
using additive notation).

Theorem. The function Φ : Aut′(E) → Z1(G,A) given by Φ(ϕ) = δϕ is an
isomorphism. Under this isomorphism, Inn′(E) corresponds to B1(G,A). In par-
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ticular,
H1(G,A) ∼= Aut′(E).

If the section σ is a homomorphism (so that the extension is split), then G1 = σ(G)
is called a complement of A in E. Viewing A as a subgroup of E, we then have
AG1 = E and A ∩G1 = 1.

Corollary. If G1 and G2 are two complements of A in E, then there exists
ϕ ∈ Aut′(E) such that ϕ(G1) = G2.

Assume that G and A are finite with (|G|, |A|) = 1. The Schur-Zassenhaus theorem
(5.5) says that the extension E splits so that there exists a complement G1 of A
in E. Let G2 be another complement. By the corollary, there exists ϕ ∈ Aut′(E)
such that ϕ(G1) = G2. But the lemma of 5.4 gives H1(G,A) = 0 so the theorem
above implies that ϕ = ιa for some a ∈ A, whence G2 = a−1G1a.

Corollary. In the statement of the Schur-Zassenhaus theorem, any two com-
plements of A in E are conjugate.

Our proof required that A be abelian, but the corollary is true in general.

6. Derived category

6.1. (Introduction)
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Associated to an abelian category A is a certain category D(A) called the “derived
category of A.” This new category is designed for doing the homological algebra of
A in that it simplifies the notions of derived functors and spectral sequences.

Here is a quick sketch of the construction. The objects of D(A) are simply the
cochain complexes of A. The morphisms are obtained from chain maps in a two-
step process. First, one mods out null homotopic chain maps, which has the effect
of making two chain maps equal when they were merely homotopic before (this
produces the “homotopy category” K(A)). Next, one localizes at those chain maps
that induce isomorphisms on homology (the so-called “quasi-isomorphisms”). This
has the effect of making quasi-isomorphisms into actual isomorphisms.

As an illustration of the suitability of D(A) for doing homological algebra, we have
the following (assuming A has enough injectives): For any objects A and B of A,

ExtnA(A,B) = HomD(A)(A,B[n]),

where on the right, A is the complex with A as degree zero term and zeros elsewhere
and B[n] is the complex with B as degree −n term and zeros elsewhere.

The homotopy category K(A) is an example of a “triangulated category” (and in
turn the derived category D(A) is as well). The construction process makes use of
this additional structure.

6.2. (Shift functor)

We fix an abelian category A. Let Ch(A) be the category of chain complexes in
A, and let A ∈ ob Ch(A). We put An = A−n and dn = d−n and call the resulting
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complex

· · · // An
dn // An+1 // · · ·

a cochain complex. (Derived categories were originally developed to deal with
cohomology and the notation best suited for that theory has persisted.)

For an integer s, let A[s] be the cochain complex with

A[s]n = An+s dnA[s] = (−1)sdn+sA ,

and for a chain map f : A→ B define f [s] : A[s]→ B[s] by f [s]n = fn+s. Then [s]
is a functor from Ch(A) to itself, called the shift functor of degree s.

6.3. (Homotopy category K(A))

Let A and B be two cochain complexes. We recall some definitions. A chain
map f : A → B is null homotopic (written f ∼ 0) if there exist morphisms
sn : An → Bn−1 such that sn+1dnA + dn−1B sn = fn for all n. Two chain maps
f, g : A → B are homotopic (written f ∼ g) if f − g ∼ 0. The set of null
homotopic chain maps in Hom(A,B) is a subgroup. Write Hom(A,B) for the
corresponding quotient.

Let f , g, and h be chain maps with g ∼ 0. If gf is defined, then gf ∼ 0. Similarly,
if hg is defined, then hg ∼ 0. It follows that one obtains a well-defined composition
Hom(B,C)×Hom(A,B)→ Hom(A,C) by putting ḡf̄ = gf .

The homotopy category K(A) of A is the category with cochain complexes as
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objects, with morphisms HomK(A)(A,B) = Hom(A,B), and with composition as
just defined.

If f, g : A → B are chain maps and f ∼ g, then Hn(f) = Hn(g) for each n.
Therefore, we get a well-defined functor Hn : K(A) → Ab by putting Hn(f̄) =
Hn(f).

We will often write f̄ as just f and rely on phrases such as f = g in K(A) (meaning
f ∼ g) when clarification is required.

6.4. (Trianglulated category)

Let f : A→ B be a morphism in Ch(A). The mapping cone of f is the cochain
complex M(f) defined by

M(f)n = An+1 ⊕Bn, dnM(f) =

[
−dn+1

A 0
fn+1 dnB

]
.

Define α(f) : B →M(f) and β(f) : M(f)→ A[1] by

α(f)n =

[
0

1Bn

]
, β(f)n =

[
1An+1 0

]
.

The sequence

A
f // B

α(f)//M(f)
β(f) // A[1]

in K(A) is the standard triangle determined by f .
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The sequences A → B → C → A[1] and A′ → B′ → C ′ → A′[1] in K(A) are
isomorphic if there exists a commutative diagram

A //

x

��

B //

��

C //

��

A[1]

x[1]
��

A′ // B′ // C ′ // A′[1]

with vertical arrows isomorphisms in K(A).

A triangle in K(A) is a sequence A
a→ B

b→ C
c→ A[1] that is isomorphic to a

standard triangle. We write such a triangle as (a, b, c), (A,B,C), or

C
+

��
A // B .

aa

The triangles in K(A) satisfy the following properties:

Theorem.

(T1) A sequence A → B → C → A[1] that is isomorphic to a triangle is also a
triangle.

(T2) For each object A, the sequence 0→ A
1→ A→ 0[1] is a triangle.



Global dimension

Tor dimension

Spectral sequence

Applications of spectral . . .

Cohomology of groups

Derived category

JJ II

J I

Page 41 of 49

Go Back

Full Screen

(T3) If (a, b, c) is a triangle, then so are (b, c,−a[1]) and (−c[−1], a, b).

(T4) If (a, b, c) and (a′, b′, c′) are triangles and there are morphisms x and y such
that a′x = ya, then there exists a morphism z such that the following diagram
is commutative:

A
a //

x

��

B
b //

y

��

C
c //

z

��

A[1]

x[1]
��

A′
a′ // B′

b′ // C ′
c′ // A′[1] .

(T5) For each pair of morphisms A
a→ B

b→ C, there is a commutative diagram

A
a //

1

��

B
y //

b

��

C ′ //

��

A[1]

1
��

A // C //

��

B′ //

��

A[1]

a[1]

��
A′

1 //

x

��

A′
x //

��

B[1]

B[1]
y[1] // C ′[1] ,

where the first two rows and the two middle columns are triangles.
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Property (T5), the “Octahedral axiom,” can be visualized using the following dia-
gram:

B′

!!

+

��

C ′

==

+
��

A′
+

oo

+

��

A //

a !!

C

OO

XX

B .
b

==

y

XX

The four triangles with arrows going in the same direction are triangles; the other
ones are commutative. The slanted squares ABA′B′ and BCB′C ′ are commutative.

A triangulated category is an additive category T with an auto-equivalence
T → T , A 7→ A[1] (with inverse A 7→ A[−1]) together with a class of sequences
A → B → C → A[1] in T called triangles such that (T1)-(T5) above hold. The
theorem shows that K(A) is a triangulated category with the degree one shift
functor and the triangles defined as above.

6.5. (Localization)

Let C be a category and let S be a family of morphisms in C. A localization of C
with respect to S is a category CS and a functor Q : C → CS such that
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1. Q(s) is an isomorphism for each s in S,

2. if F : C → D is a functor such that F (s) is an isomorphism for each s in S,
then there exists a unique functor F ′ : CS → D such that F ′ ◦Q = F .

Such a localization is unique up to equivalence. We give conditions on S that
guarantee the existence of the pair (CS , Q).

The family S is a multiplicative system if it satisfies the following properties.

(S1) 1A ∈ S for each object A of C.

(S2) If f and g are in S, then gf is in S if defined.

(S3) Any diagrams
B

A

OO

+3 C

B

��
A Cks

with horizontal arrows in S can be completed to commutative diagrams

B +3 D

A

OO

+3 C

OO B

��

Dks

��
A Cks

with horizontal arrows in S.
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(S4) If f and g are morphisms in C, then there exists s in S such that sf = sg if
and only if there exists t in S such that ft = gt.

Assume that S is a multiplicative system. Let A and B be objects of C. A pair
(s, f) of morphisms

A A′
sks f // B

with s in S is a (right) fraction from A to B. Two fractions (s, f) and (t, g)
from A to B are equivalent, written (s, f) ∼ (t, g), if there exists a commutative
diagram

A′

s

z�

f

  
A A1
ks

h

OO

k
��

// B

A′′
t

\d

g

>>

with left horizontal arrow in S. (Put more simply, the fractions are equivalent if
there exist h and k making the left and right triangles commute and such that
sh = tk is in S. The horizontal arrows are shown only to indicate that a new
fraction arises.) One shows that ∼ is an equivalence relation. Denote by s−1f the
equivalence class of the fraction (s, f).

If (s, f) is a fraction from A to B and (t, g) is a fraction from B to C, put

t−1g ◦ s−1f = (st1)
−1(gf1),
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where t1 and f1 are as in (S3):

A′′

t1

z�

f1

!!
A′

s

z� f !!

B′

ty�

g

  
A B C

One shows that this definition is independent of the choices made.

For objects A and B of C, let HomCS (A,B) be the class of all s−1f with (s, f)
a fraction from A to B. If this class is a set for every A and B, then, using the
composition defined above, we get a category CS (having the same objects as C).

Theorem. If HomCS (A,B) is a set for each A and B, then CS together with the
functor Q : C → CS that is the identity on objects and that sends the morphism f
to 1−1f is a localization of C with respect to S.

6.6. (Derived category)

Let A and B be cochain complexes in the abelian category A. A chain map f : A→
B is a quasi-isomorphism if the induced map Hn(f) : Hn(A) → Hn(B) is an
isomorphism for each n. A homotopy class of chain maps is a quasi-isomorphism
if any (and hence every) representative is a quasi-isomorphism. Let S be the family
of all quasi-isomorphisms in K(A).
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Theorem. The family S is a multiplicative system in K(A).

The proof of this theorem makes use of the triangulated structure on K(A) as
follows. LetN be the collection of all exact cochain complexes, that is, the collection
of all cochain complexes C for which Hn(C) = 0 for each n.

Lemma. The chain map f : A → B is a quasi-isomorphism if and only if there
exists a triangle

A
f // B // C // A[1]

with C ∈ N .

Proof. Let f : A→ B be a chain map and let

A
f // B //M(f) // A[1]

be the associated standard triangle. The sequence 0 → B → M(f) → A[1] → 0 is
exact and so it gives rise to the long exact sequence

· · · → Hn−1(A[1])→ Hn(B)→ Hn(M(f))→ Hn(A[1])→ Hn+1(B)→ · · ·

which is the same as

· · · → Hn(A)→ Hn(B)→ Hn(M(f))→ Hn+1(A)→ Hn+1(B)→ · · · .

A straightforward computation shows that the connecting morphisms are induced
by f . Therefore, if f is a quasi-isomorphism, then M(f) is in N . The proof of the
converse is similar.
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The derived category of A, denoted D(A), is the localization K(A)S provided
this localization is defined, that is, provided the classes HomK(A)S (A,B) are all
sets (which is the case if A = R-mod with R a ring).

D(A) inherits the structure of triangulated category from K(A).

6.7. (Ext)

In this section, we assume that the abelian category A has enough injectives (or
enough projectives with suitable adjustments). In the following theorem, on the
right hand side we identify the object A of A with the complex having degree zero
term A and zeros elsewhere, and similarly for B.

Theorem. For every integer n, we have ExtnA(A,B) ∼= HomD(A)(A,B[n]).

The proof depends on two lemmas. A (cochain) complex I is bounded below if
In = 0 for all n� 0.

Lemma. If I is a bounded below complex of injective objects and t : I → X is a
quasi-isomorphism, then there exists s : X → I with st ∼ 1I .

Proof. Since t is a quasi-isomorphism, it follows that the mapping cone M(t) =
I[1] ⊕X (see 6.4) is exact. The map β(t) : M(t) → I[1] is seen to be null homo-
topic by the proof of the Comparison theorem. If (u, s) from I[1] ⊕ X to I is a
corresponding homotopy, then s is the desired map and u is the homotopy showing
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that st ∼ 1I .

Lemma. If I is a bounded below complex of injective objects, then the canonical
map

ϕ : HomK(A)(A, I)→ HomD(A)(A, I)

is an isomorphism for every complex A.

Proof. If (t, f) is a fraction and s is as in the preceding lemma, then

ϕ(sf) = 1−1(sf) = 1−1(st)t−1f = t−1f

so ϕ is surjective.

Let f, g : A → I and assume that 1−1f = ϕ(f) = ϕ(g) = 1−1g. Then ft1 = gt1
for some quasi-isomorphism t1, so that tf = tg for some quasi-isomorphism t by
(S4) of 6.5. With s as in the preceding lemma, we get f ∼ stf = stg ∼ g, so ϕ is
injective.

The proof of the theorem now goes as follows. The object B has an injective
resolution B → I, which we can write

· · · // 0 //

��

B //

��

0 //

��

0 //

��

· · ·

· · · // 0 // I0 // I1 // I2 // · · · .
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This chain map is a quasi-isomorphism, which is invertible in D(A). Therefore,

HomD(A)(A,B[n]) ∼= HomD(A)(A, I[n])

∼= HomK(A)(A, I[n]) (by Lemma)

∼= Hn(HomA(A, I))

= ExtnA(A,B),

where the third isomorphism sends the homotopy class f̄ to the class of f0.
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