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1 Global dimension

1.1. (Projective dimension)

Let A be an R-module. The projective dimension of A, written pd(A), is
the least nonnegative integer d for which there exists a projective resolution
of A of the form

0→ Pd → · · · → P1 → P0 → A→ 0,

unless there is no such resolution, in which case pd(A) =∞.

For instance, A is projective if and only if pd(A) = 0. And if R = Z, then
pd(Z2) = 1 (0→ 2Z→ Z→ Z2 → 0).

Theorem. For given A and d, the following are equivalent:

(i) pd(A) ≤ d,

(ii) ExtnR(A,B) = 0 for all n > d and all B,

(iii) Extd+1
R (A,B) = 0 for all B,

(iv) if 0 → Md → Pd−1 → · · · → P1 → P0 → A → 0 is exact with each Pi
projective, then Md is projective.

When d = 0, the equivalence (i) ⇔ (iii) says that A is projective if and only
if Ext1R(A,B) = 0 for all B, which is the theorem in I-12.3.

The proof of this theorem requires the following lemma, which is proved
using the long exact Ext sequence and the technique of “dimension shifting.”

Lemma. If

0→Mn → Pn−1 → · · · → P1 → P0 → A→ 0

(n ≥ 1) is exact with each Pi projective, then Exti−nR (Mn, B) ∼= ExtiR(A,B)
for every R-module B and every i ≥ n+ 1.

Here is an application of the theorem. If m is an integer and R = Zm2 , then
the R-module Zm has infinite projective dimension by (i)⇒(iv) since Zm is
not projective and there is a resolution

0→ Zm → Zm2 → Zm2 → · · · → Zm2 → Zm → 0

https://fp.auburn.edu/holmerr/8310/textbook-screen.pdf#numberedsection.3
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of arbitrary length with Zm → Zm2 the natural monomorphism and the
other maps multiplication by m.

1.2. (Injective dimension)

Let B be an R-module. The injective dimension of B, written id(B), is
the least nonnegative integer d for which there exists an injective resolution
of B of the form

0→ B → E0 → E1 → · · · → Ed → 0,

unless there is no such resolution, in which case id(B) =∞.

For instance, if B is injective, then id(B) = 0, and if R = Z, then id(Z) = 1
(0→ Z→ Q→ Q/Z→ 0).

Theorem. For given B and d, the following are equivalent:

(i) id(B) ≤ d,

(ii) ExtnR(A,B) = 0 for all n > d and all A,

(iii) Extd+1
R (A,B) = 0 for all A,

(iv) if 0 → B → E0 → E1 → · · · → Ed−1 → Md → 0 is exact with each
Ei injective, then Md is injective.

The proof of this theorem is almost identical to the proof of the theorem in
the previous section.

1.3. (Global dimension)

The left global dimension of the ring R, written lgd(R), is the supremum
of the set of projective dimensions of all (left) R-modules:

lgd(R) = sup{pd(A) |A ∈ R-mod}

For example, lgd(Z) = 1 since pd(Z2) = 1 and for any Z-module A, there
exists an exact sequence 0→ F1 → F0 → A→ 0 with Fi free.

Theorem. The following numbers are equal:
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(i) lgd(R),

(ii) sup{id(B) |B ∈ R-mod},

(iii) sup{pd(R/I) | I is a left ideal of R},

(iv) sup{d | ExtdR(A,B) 6= 0 for some A,B ∈ R-mod}.

There is a corresponding notion of “right global dimension” of R, written
rgd(R). It has been shown that for every 1 ≤ m,n ≤ ∞ there exists a ring
R such that lgd(R) = m and rgd(R) = n (Jategaonkar, 1969). On the other
hand, if R is both left and right Noetherian, then lgd(R) = rgd(R).

1.4. (Semisimple ring)

In this section, we show that the class of rings with zero global dimension
(either left or right) is precisely the class of semisimple rings.

An R-module is simple if it has no nonzero proper submodules. An R-
module is semisimple if it is a direct sum of simple submodules.

Theorem. An R-module A is semisimple if and only if every exact se-
quence 0→ B → A→ C → 0 splits.

A ring is semisimple if it is semisimple as a left module over itself (or
equivalently, as a consequence of the next theorem and its identical right
counterpart, as a right module over itself).

Theorem (Wedderburn). R is semisimple if and only ifR ∼=
∏t
i=1 Matni(Di),

for some t, ni, and division rings Di.

If R is semisimple, then the t, ni and Di in the theorem are uniquely de-
termined by R. Each ring Matni(Di) is simple (i.e., has no nonzero proper
two-sided ideals), so a semisimple ring is a finite direct product of simple
rings. Conversely, if R is a finite direct product of simple left (or right)
Artinian rings, then R is semisimple. (A ring is left Artinian if its left ideals
satisfy the descending chain condition, or, equivalently, if each nonempty
collection of its left ideals has a minimal element, that is, a left ideal that
does not properly contain any other left ideal in the collection.)

Maschke’s theorem says that if G is a finite group and K is a field of char-
acteristic not a divisor of |G|, then the group ring KG is semisimple.
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Theorem. The following are equivalent:

(i) R is semisimple,

(ii) lgd(R) = 0,

(iii) every R-module is injective,

(iv) every R-module is projective,

(v) every short exact sequence of R-modules splits.

We get four further equivalent statements by using the “right” versions of
(ii) through (v).

2 Tor dimension

2.1. (Pontryagin dual)

Let B be an R-module. The Pontryagin dual of B is the right R-module

B∗ := HomZ(B,Q/Z)

with action given by (fr)(b) = f(rb). A similar definition yields a left
R-module A∗ for every right R-module A.

Lemma. Let A,B and C be R-modules.

(i) If 0 6= b ∈ B, then there exists f ∈ B∗ such that f(b) 6= 0.

(ii) A→ B → C is exact if and only if C∗ → B∗ → A∗ is exact.

An R-module A is finitely presented if there exists an exact sequence
Rn

α→ Rm → A → 0 for some positive integers m and n. In this situation,
A has the presentation

A = 〈e1, . . . , em |
∑
i

αijei, 1 ≤ j ≤ n〉,

which denotes the free R-module on the set of elements to the left of the
vertical bar ( | ) modulo the submodule generated by the set of elements to
the right (the latter of which is the image of α).
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Theorem. Let AR, RB, and RC be modules as indicated.

(i) The map σ : (A⊗RB)∗ → HomR(A,B∗) given by σ(f)(a)(b) = f(a⊗b)
is an isomorphism that is natural in both A and B.

(ii) The map τ : B∗⊗R C → HomR(C,B)∗ given by τ(f ⊗ c)(g) = f(g(c))
is natural in both B and C. It is an isomorphism if C is finitely
presented.

Theorem. Every finitely presented flat R-module is projective.

Theorem. Let B be an R-module. The following are equivalent:

(i) B is flat,

(ii) B∗ is injective,

(iii) the map I ⊗R B → R⊗R B induced by inclusion is injective for every
right ideal I of R,

(iv) TorR1 (R/I,B) = 0 for every right ideal I of R.

2.2. (Flat dimension)

Let B be an R-module. The flat dimension of B, written fd(B), is the
least nonnegative integer d for which there exists a flat resolution of B of
the form

0→ Qd → · · · → Q1 → Q0 → B → 0,

unless there is no such resolution, in which case fd(B) =∞.

For instance, B is flat if and only if fd(B) = 0. If R = Z, then fd(Z2) = 1,
since 0 → 2Z → Z → Z2 → 0 is a flat resolution of Z2 (recalling that
projective⇒ flat) and Z2 is not flat since · ⊗ZZ2 does not preserve exactness
of 0→ Z→ Q.

Since a projective resolution is a flat resolution, it follows that pd(B) ≥
fd(B). One can have strict inequality here since the Z-module Q is flat
(I-10.4) so fd(Q) = 0, but it is not projective (a nonzero submodule of a free
Z-module cannot be divisible) so pd(Q) 6= 0.

Theorem. For given B and d, the following are equivalent:

https://fp.auburn.edu/holmerr/8310/textbook-screen.pdf#numberedsection.4
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(i) fd(B) ≤ d,

(ii) TorRn (A,B) = 0 for all n > d and all A,

(iii) TorRd+1(A,B) = 0 for all A,

(iv) if 0→Md → Qd−1 → · · · → Q1 → Q0 → B → 0 is exact with each Qi
flat, then Md is flat.

When d = 0, the equivalence (i) ⇔ (iii) says that B is flat if and only if
TorR1 (A,B) = 0 for all A, which is a theorem in I-12.3.

There is a similar notion of flat dimension of a right R-module A (formally,
one could define fd(A) to be the flat dimension of the (left) Rop-module A).

2.3. (Tor-dimension)

The Tor dimension of the ring R, written td(R), is the supremum of the
set of flat dimensions of all (left) R-modules:

td(R) = sup{fd(B) |B ∈ R-mod}

For example, td(Z) = 1 since fd(Z2) = 1 and for any Z-module A, there
exists an exact sequence 0→ F1 → F0 → A→ 0 with Fi free (hence flat).

Theorem. The following numbers are equal:

(i) td(R),

(ii) sup{fd(A) |A ∈mod-R},

(iii) sup{fd(R/I) | I is a left ideal of R},

(iv) sup{fd(R/I) | I is a right ideal of R},

(v) sup{d | TorRd (A,B) 6= 0 for some A ∈mod-R, B ∈ R-mod}.

Since fd(B) ≤ pd(B) for an R-module B, it follows that td(R) ≤ lgd(R),
and, similarly, td(R) ≤ rgd(R).

Theorem.

(i) If R is left Noetherian, then td(R) = lgd(R).

https://fp.auburn.edu/holmerr/8310/textbook-screen.pdf#numberedsection.3
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(ii) If R is right Noetherian, then td(R) = rgd(R).

In particular, if R is (left and right) Noetherian, then lgd(R) = rgd(R).

We have seen that R is semisimple if and only if its left (or right) global
dimension is zero (see theorem in 1.4). The following characterization of
semisimple ring using Tor-dimension is therefore a direct consequence of the
preceding theorem (and Wedderburn’s theorem to see that a semisimple ring
is Noetherian).

Corollary. The ring R is semisimple if and only if it is left Noetherian
and td(R) = 0.

2.4. (Von Neumann regular ring)

In this section, we show that the class of rings with zero Tor dimension is
precisely the class of von Neumann regular rings.

The ring R is von Neumann regular if for each a ∈ R there exists x ∈ R
such that axa = a (one regards x as a “weak inverse” of a). For example, if
R is a division ring, then R is von Neumann regular.

Exercise. Let V be a vector space over a division ring D. Prove that the
ring EndD(V ) is von Neumann regular.

The main theorem requires a definition and a lemma. An element e of R is
idempotent if e2 = e. Both 0 and 1 are idempotent. If e ∈ R is idempotent,
then so is 1 − e, and we get the left ideal direct sum decomposition R =
Re+̇R(1 − e) (which is a proper decomposition if e 6= 0, 1). Conversely, if
R = I+̇J with I and J left ideals of R and one writes 1 = e+ f with e ∈ I
and f ∈ J , then e and f are idempotent. (Indeed, e = e1 = e2 + ef and
since e, e2 ∈ I and ef ∈ J , we get ef = 0 so that e2 = e. Similarly for f .)

Lemma. Assume that R is von Neumann regular. Let I be a finitely
generated left ideal of R.

(i) I = Re for some idempotent element e of R, so that R = I+̇R(1− e).

(ii) I and R/I are projective R-modules.

Theorem. The following are equivalent:
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(i) R is von Neumann regular,

(ii) td(R) = 0,

(iii) every R-module is flat,

(iv) R/I is projective for every finitely generated left ideal I of R.

Corollary. R is semisimple if and only if it is von Neumann regular
and left Noetherian.

EndD(V ) (as in the exercise above) is von Neumann regular, but it is not
semisimple if V is infinite dimensional (by Wedderburn’s theorem, for ex-
ample). This example also shows that one can have lgd(R) strictly greater
than td(R).
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3 Spectral sequence

3.1. (Definition)

A (homology) spectral sequence E consists of the following:

(i) for each integer r ≥ 0 a doubly indexed family of R-modules {Erpq}
(p, q ∈ Z);

(ii) R-homomorphisms drpq : Erpq → Erp−r,q+r−1 such that drp−r,q+r−1d
r
pq =

0 for all p, q, r;

(iii) isomorphisms Er+1
pq → ker drpq/ im drp+r,q−r+1 for each p, q, r.

(A cohomology spectral sequence is defined similarly, except with ar-
rows reversed.)

For each r, the family {Erpq} is the rth sheet of the sequence. It is conve-
nient to locate the term Erpq of the rth sheet at the point (p, q) of the plane
(see figure).

The maps drpq are differentials. They point downward when r = 0, to the
left when r = 1, and up and to the left for r > 1 (as in the figure). Their
lengths increase with r (for r > 0).

The total degree of the term Erpq is p+ q. Terms of identical total degree
lie along lines of slope −1 (red).



3 SPECTRAL SEQUENCE 11

The differentials form chain complexes along the lines with slope −(r−1)/r.
The rth sheet consists of the homology modules of the complexes in the
(r−1)st sheet. In particular, each term Erpq is a subquotient (i.e., a quotient
of a submodule) of the corresponding term on the preceding sheet:

In particular, if any term Erpq is zero, then the corresponding terms on the
subsequent sheets are also zero.

If the modules E0
pq on the initial sheet are zero whenever p < 0 or q < 0,

then E is a first quadrant spectral sequence. In this case, for each pair
(p, q), there is a large enough r such that the differential leaving Erpq lands
in the second quadrant and the differential arriving at Erpq comes from the
fourth quadrant, so that

Erpq = Er+1
pq = Er+2

pq = · · · .

This module is denoted E∞pq .

More generally, the spectral sequence E is bounded if, for each integer n,
there exist only finitely many nonzero terms E0

pq of total degree n (e.g., a first
quadrant spectral sequence is bounded). Since differentials decrease total
degree by one and increase in length with r, a bounded spectral sequence
has the property that for each pair (p, q), the terms Erpq eventually stabilize
as above, so that E∞pq is defined.

The bounded spectral sequence E converges to the family {Hn} of R-
modules if for each n there exists a filtration

· · ·Fp−1Hn ≤ FpHn ≤ Fp+1Hn · · ·

of Hn with FsHn = 0 and FtHn = Hn for some s ≤ t and, for each pair
(p, q) there exists an isomorphism

βpq : E∞pq → FpHp+q/Fp−1Hp+q.
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In this case, we write
E0
pq ⇒ Hp+q.

Example. (Convergent first quadrant spectral sequence)

Let E be a first quadrant spectral sequence and assume that E0
pq ⇒ Hp+q.

Fix a nonnegative integer n. According to the definition of convergence, Hn

has a descending sequence of submodules with successive quotients that can
be read off by going to a sheet containing each E∞pq with p+ q = n (such a
sheet exists), starting on the x-axis at position n and proceeding northwest
to get

E∞n0, E
∞
n−1,1, E

∞
n−2,2, . . . , E

∞
0,n.

3.2. (Spectral sequence of a filtered complex)

Let C be a chain complex ofR-modules. For each n, let C ′n be a submodule of
Cn and assume that dn(C ′n) ⊆ C ′n−1 for each n. Then C ′ is a chain complex
with differentials induced by the differentials dn; it is called a subcomplex
of C, written C ′ ≤ C (or C ≥ C ′).

A filtration of C is a family {Fp(C)}p∈Z of subcomplexes of C with Fp(C) ≥
Fp−1(C) for each p. Such a filtration is bounded if for each n there exist
s ≤ t such that Fs(C) = 0 and Ft(C) = C.

Theorem. Let {Fp(C)} be a bounded filtration of the chain complex
C. There exists a spectral sequence E with differentials induced by the
differentials of C such that

E0
pq = Fp(Cp+q)/Fp−1(Cp+q)⇒ Hp+q(C).

3.3. (Spectral sequence of a bicomplex)

A bicomplex C is a doubly-indexed family {Cpq}p,q∈Z of R-modules to-
gether with maps dhpq : Cpq → Cp−1,q and dvpq : Cpq → Cp,q−1 such that

dhdh = 0, dvdv = 0, dvdh + dhdv = 0.

The module Cpq is visualized as being located at the point (p, q) of the
plane. The maps dh are horizontal and point to the left, while the maps dv

are vertical and point down. The last condition says that the squares are
anticommutative: dvdh = −dhdv.
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The total complex Tot(C) of the bicomplex C is the chain complex with
nth term

Tot(C)n =
∐

p+q=n

Cpq

and with differential dn induced by the map on Cpq given by dh + dv. One
checks using the properties of dh and dv that d2n = 0 as required.

There are two natural filtrations associated with the total complex, given
by

IFp(Tot(C))n =
∐
i≤p

Ci,n−i

and
IIFp(Tot(C))n =

∐
i≤p

Cn−i,i.

We give a description of the first few sheets of the corresponding spectral
sequences, denoted IE and IIE, respectively:

IE0
pq = IFp(Tot(C))n/

IFp−1(Tot(C))n ∼= Cpq (n = p+ q).

The differential d0pq is induced by the differential dn = dhpq + dvpq, and since

dhpq maps into IFp−1(Tot(C))n it follows that d0pq = dvpq (identifying IE0
pq

with Cpq). Therefore, the next sheet of the spectral sequence is obtained by
taking homology of the bicomplex C in the vertical direction, which is what
the following notation signifies:

IE1
pq = Hv

pq(C) = ker dvpq/ im dvp,q+1.

Again, the differential d1pq is induced by the differential dn = dhpq + dvpq, but

now the map induced by dvpq is zero, so we have d1pq = d̄hpq where the bar
denotes the induced map. Therefore, the next sheet of the spectral sequence
is obtained by taking homology relative to maps induced by the horizontal
maps of the complex C, which again we use suggestive notation for:

IE2
pq = Hh

pq(H
v(C)) = ker d̄hpq/ im d̄hp+1,q.

The description of the first few sheets of IIE is very similar, except that
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there is a reversal of indices that occurs:

IIE0
pq = IIFp(Tot(C))n/

IIFp−1(Tot(C))n ∼= Cqp (n = p+ q),

IIE1
pq = Hh

qp(C) (homology of C using horizontal maps),

IIE2
pq = Hv

qp(H
h(C)) (homology of sheet 1 using maps induced by

vertical maps of C).

According to the previous section, both of these spectral sequences converge
to the homology of the total complex if the filtrations are bounded, which
is the case if the bicomplex C is bounded (same definition as for bounded
spectral sequence).

Theorem. If the bicomplex C is bounded, then

IE2
pq = Hh

pq(H
v(C))⇒ Hn(Tot(C)),

and
IIE2

pq = Hv
qp(H

h(C))⇒ Hn(Tot(C)),

where n = p+ q.

The meaning of the notation is that the spectral sequence IE converges to
Hn(Tot(C)) and its second sheet (p, q) term is as indicated. Similarly for
IIE.

3.4. (Sign trick)

Let {Cpq}p,q∈Z be a doubly indexed family of R-modules and let δhpq : Cpq →
Cp−1,q and δvpq : Cpq → Cp,q−1 be maps such that

δhδh = 0, δvδv = 0, δvδh = δhδv

(i.e., C is a chain complex of chain complexes). The family C becomes a
bicomplex if one uses the following sign trick to define the maps:

dhpq = δhpq, dvpq = (−1)pδvpq.

(The sign (−1)p changes the squares from commutative to anticommutative.)
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4 Applications of spectral sequence

4.1. (Balancing Tor)

We defined the functor TorRn (A, · ) to be Ln(A⊗R ·), so that

TorRn (A,B) = Hn(A⊗R Q)

where Q→ B → 0 is a projective resolution of B. We stated that we could
just as well have defined

TorRn (A,B) = Hn(P ⊗R B)

where P → A→ 0 is a projective resolution of A. Our first application of a
spectral sequence is the proof of the equivalence of these definitions.

Theorem. With the notation above, Hn(A⊗R Q) ∼= Hn(P ⊗R B).

Proof. (Sketch) Put Cpq = Pp⊗RQq and use the sign trick to view C as a
bicomplex. Using the previous section, we find that

IE2
pq
∼=

{
Hn(P ⊗R B) q = 0,

0 q 6= 0

(n = p + q). In particular, IE∞pq = IE2
pq so that Tot(C)n ∼= Hn(P ⊗R B).

Similarly, using IIE, we find that Tot(C)n ∼= Hn(A ⊗R Q) and the claim
follows.

A similar proof, using a cohomology spectral sequence, shows that the two
ways to compute ExtnR(A,B) agree.

4.2. (Künneth spectral sequence)

Let P be a chain complex of flat right R-modules that is bounded below
(i.e., there exists an integer N such that Pn = 0 for all n < N). Let M
be an R-module. The following result relates the homology modules of the
complex P ⊗RM to those of the complex P .

Theorem. There exists a bounded spectral sequence E such that

E2
pq = Torp(Hq(P ),M)⇒ Hn(P ⊗RM),

where n = p+ q.
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E is called the Künneth spectral sequence.

Corollary. Let P be a chain complex of flat right R-modules and as-
sume that im dn is flat for each n. For each n there exists an exact sequence

0→ Hn(P )⊗RM → Hn(P ⊗M)→ TorR1 (Hn−1(P ),M)→ 0.

This result is known as the universal coefficient theorem of homology.
There is a corresponding result involving Ext1, which is proved using a
cohomology analog of the Künneth spectral sequence. Both results have
generalizations referred to as the “Künneth formulas.”

Note that if M is flat, then the result says that Hn(P ⊗M) ∼= Hn(P )⊗RM
(though this statement is actually required in the proof so that an indepen-
dent argument is required).

4.3. (Change of rings)

Let ϕ : R → S be a ring homomorphism. We use this homomorphism to
view any S-module B as an R-module: rb = ϕ(r)b (r ∈ R, b ∈ B).

Let A be a right R-module. Since S is an (R,S)-bimodule, the tensor
product A ⊗R S is a right S-module with action (a ⊗ s)s′ = a ⊗ (ss′) (a ∈
A, s, s′ ∈ S). If P is a chain complex, then each term of the complex P ⊗RS
is a right S-module and the differentials are S-homomorphisms. Therefore,
TorRq (A,S) is a right S-module for each q.

Theorem. Let ϕ : R → S be a ring homomorphism and let AR and SB
be modules as indicated. There exists a first quadrant spectral sequence E
such that

E2
pq = TorSp (TorRq (A,S), B)⇒ TorRn (A,B),

where n = p+ q.

There is a corresponding theorem involving Ext.

Corollary. Let ϕ : R→ S be a ring homomorphism. For any S-module
B we have

fdR(B) ≤ fdS(B) + fdR(S).

(The subscripts indicate the rings to be used in the definition of flat dimen-
sion.)
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5 Cohomology of groups

5.1. (Group extension problem)

Let G and A be groups. An extension of G by A is a group E having a
normal subgroup isomorphic to A with corresponding quotient isomorphic
to G.

An important unsolved problem is the classification of all such extensions
for arbitrary finite groups G and A. If this problem were solved, then in a
sense one would know all finite groups. In fact, for this, one would need only
classify all such extensions with A simple. Indeed, arguing by induction on
the group order, a given nontrivial finite group E has a simple normal sub-
group (known by the Classification Theorem) with corresponding quotient
of order less than |E| (hence known by the induction hypothesis), so the
group E is known by the assumed solution to the extension problem.

We show that, under the assumption that A is abelian, the essentially dis-
tinct extensions of G by A are in one-to-one correspondence with a certain
Ext group. This leaves (for the abelian A case) the problem of computing
that Ext group, and for this standard techniques in homological algebra can
be applied.

5.2. (Cohomology groups)

Let G be a group. A G-module is an abelian group A together with a map
G×A→ A, written (g, a) 7→ g · a, such that for all g, h ∈ G and a, b ∈ A

(i) 1 · a = a (1 is the identity element of G),

(ii) (gh) · a = g · (h · a), and

(iii) g · (a+ b) = g · a+ g · b.

(Properties (i) and (ii) say that the map gives an action of G on A making
A a G-set.)

A G-module A gives rise to a homomorphism ϕ : G → End(A) given by
ϕ(g)(a) = g · a. Conversely, such a homomorphism gives rise to a G-module
structure on A by putting g · a = ϕ(g)(a).

A G-module A is trivial if g · a = a for all g ∈ G and a ∈ A. Any
abelian group can be viewed as a trivial G-module by using this action.
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The G-module A is trivial if and only if the corresponding homomorphism
ϕ : G→ End(A) is the trivial homomorphism.

For us, the main example of a G-module arises in connection with an exten-
sion of G. Let E be an extension of G by the abelian group A, so that A is
identified with a normal subgroup of E and G is identified with E/A. For
g = eA ∈ G and a ∈ A, we put

g · a = ea := eae−1.

One shows that the action is independent of the chosen coset representative
(and using this fact, we write unambiguously ga for ea). The resulting G-
module A is trivial if and only if A is contained in the center of E. In this
case E is a central extension of G by A.

We use the new language to reformulate the statement of the extension
problem. Let A be a G-module. An extension E of G by A corresponds to
an exact sequence of groups

0→ A→ E → G→ 1. (*)

(We write 0 on the left since we are viewing A as an additive group.) Two
extensions E and E′ of G by A are equivalent if there exists a homomor-
phism ϕ : E → E′ such that the following diagram is commutative:

0 // A //

1
��

E //

ϕ
��

G //

1
��

0

0 // A // E′ // G // 0

.

In this case, the five lemma shows that ϕ is in fact an isomorphism.

The extension (*) respects the G-module structure of A if g · a = ga
for each g ∈ G and a ∈ A. A solution to the extension problem would be
a determination of the set e(G,A) of equivalence classes of those extensions
of G by A that respect the G-module structure of A.

Let ZG be the group ring of G over Z. Thus ZG is the free abelian group
on G with multiplication induced by the group operation of G so that(∑

g∈G
αgg

)(∑
h∈G

βhh

)
=
∑
g,h∈G

αgβh(gh).



5 COHOMOLOGY OF GROUPS 19

If A is a G-module, then the action of G on A extends linearly to give a
ZG-module structure on A:(∑

g∈G
αgg

)
a =

∑
g∈G

αgg · a.

Conversely, any ZG-module can be viewed as a G-module by restricting the
scalars from ZG to G. If A is a trivial G-module, then (

∑
αgg)a = (

∑
αg)a

(αg ∈ Z, a ∈ A).

Let A be a G-module. For a nonnegative integer n, the nth cohomology
group of G with coefficients in A is

Hn(G,A) := ExtnZG(Z, A),

where Z is viewed as a trivial G-module. We will show that e(G,A) is in
one-to-one correspondence with the set H2(G,A). We will also give inter-
pretations of H0(G,A) and H1(G,A).

5.3. (Standard resolution)

To facilitate the interpretations of Hn(G,A), we introduce a particular free
resolution of the trivial ZG-module Z.

Let Bn be the free ZG-module on the set {[ g1 | g2 | · · · | gn ] | 1 6= gi ∈ G}.
Extend the meaning of the symbol [ g1 | g2 | · · · | gn ] by defining it to be 0 if
gi = 1 for some i.

By convention, B0 is the free ZG-module on the singleton set {[ ]} and
therefore identifies with ZG. The map d0 : B0 → Z given by

∑
αgg 7→

∑
αg

is a ZG-epimorphism called the augmentation map of ZG.

For n > 0, let dn : Bn → Bn−1 be the ZG-homomorphism determined by
the formula

dn([ g1 | g2 | · · · | gn ]) = g1[ g2 | · · · | gn ]

+

n−1∑
i=1

(−1)i[ g1 | · · · | gigi+1 | · · · | gn ]

+ (−1)n [ g1 | · · · | gn−1 ].

Theorem. The chain complex B → Z → 0 is a free resolution of the
trivial ZG-module Z.
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This is the standard resolution of Z. (It is also known as the bar reso-
lution of Z, presumably due to the bars | in the notation of the generators
of Bn.)

Let A be a G-module. Using the standard resolution, we have that Hn(G,A)
is the nth cohomology group of the chain complex

0 // HomZG(B0, A)
d1
∗
// HomZG(B1, A)

d2
∗
// HomZG(B2, A)

d3
∗
// · · ·

The group HomZG(Bn, A) identifies with the group Cn(G,A) of all functions
f : Gn → A such that f(g1, . . . , gn) = 0 if gi = 1 for some i, where Gn =
G×· · ·×G (n factors). (We view G0 as a singleton set and for f ∈ C0(G,A)
we write f() ∈ A for the image of the single element.) The elements of
Cn(G,A) are n-cochains. For f ∈ Cn(G,A), we have

dn+1
∗(f)(g0, g1, . . . , gn) = g0 · f(g1, . . . , gn)

+
n∑
i=0

(−1)i+1 f(g0, . . . , gigi+1, . . . , gn)

+ (−1)n+1 f(g0, . . . , gn−1)

The elements of Zn(G,A) := ker dn+1
∗ are n-cocycles and the elements

of Bn(G,A) := im dn
∗ are n-coboundaries. By definition, Hn(G,A) =

Zn(G,A)/Bn(G,A).

5.4. (Extension and H2(G,A))

Let A be a G-module and let

0 // A // E
π // G // 0

be an extension of G by A that respects the G-module structure of A.
Let σ : G → E be a section of π, that is, πσ = 1G (σ need not be a
homomorphism). Assume that σ(1) = 1.

For g, h ∈ G, we have

π(σ(g)σ(h)) = gh = π(σ(gh))

so that
σ(g)σ(h) = [g, h]σ(g)σ(h)

for some [g, h] ∈ A (we have identified A with its image). The function
[ , ] = [ , ]E,σ : G×G→ A is the factor set of the extension relative to σ.
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Lemma. A function [ , ] : G × G → A is a factor set (of some extension
relative to some section) if and only if it is a 2-cocycle, that is, if and only
if for all g, h, k ∈ G,

(i) [g, 1] = 0 and [1, g] = 0,

(ii) g · [h, k]− [gh, k] + [g, hk]− [g, h] = 0.

Recall that e(G,A) is the set of equivalence classes of those extensions of G
by A that respect the G-module structure of A.

Theorem. There is a one-to-one correspondence e(G,A)↔ H2(G,A).

A bijection Φ : e(G,A) ↔ H2(G,A) is given by Φ(Ē) = ¯[ , ]E,σ (any σ),
where the bars denote classes. The lemma shows that this function maps
into H2(G,A) and is surjective, so one just needs to check that it is well-
defined and injective.

5.5. Schur-Zassenhaus Theorem

Let G and A be groups and let ϕ : G → Aut(A), g 7→ ϕg, be a homomor-
phism (called an action of the group G on the group A). The set A×G is
a group with product given by

(a, g)(b, h) = (aϕg(b), gh).

(The identity element is (1, 1) and the inverse of (a, g) is (ϕg−1(a−1), g−1).)
This group is the semidirect product of A and G with respect to the action
ϕ, written Aoϕ G. (When ϕ is trivial, this is just the direct product.)

The usual injections identify A and G with subgroups of the semidirect
product E = A oϕ G. . Moreover, A / E (which is what the notation is
meant to indicate) and

(i) AG = E,

(ii) A ∩G = 1.

Conversely, if E is a group with a subgroup A and a normal subgroup
G satisfying these two properties, then E is the (internal) semidirect
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product of A and G, written A o G. In this case, ϕ : G → Aut(A) given
by ϕg(a) = gag−1 is an action of G on A and E is isomorphic to Aoϕ G.

Let G and A be groups. An extension

0 // A // E
π // G // 0

of G by A is split if there exists a homomorphism σ : G → E such that
πσ = 1G. In this case σ is an injection and we use it to identify G with its
image in E. Identifying A with its image as well, we then have E = AG and
A ∩G = 1 so that E = AoG.

Theorem (Schur-Zassenhaus). IfG andA are finite groups with (|G|, |A|) =
1, then every extension of G by A is split.

The proof depends on the proof of the special case where A is abelian, which
we now sketch. Let G and A be finite groups with A abelian.

Lemma. If A is a G-module, then

(i) |G|Hn(G,A) = 0 (n 6= 0),

(ii) |A|Hn(G,A) = 0.

Let E be an extension of G by A and assume that (|G|, |A|) = 1. The
extension induces a G-module structure on A. Since a|G| + b|A| = 1 for
some integers a and b, it follows from the lemma that H2(G,A) = 0. By
the theorem of 5.4, E is equivalent to an extension E′ with trivial factor set
relative to a section σ. The definition of factor set shows that σ is a homo-
morphism so that the extension E′ splits. Since any extension equivalent
to a split extension is also split, the special case of the Schur-Zassenhaus
theorem follows.

5.6. (Fixed point set and H0(G,A))

Let G be a group and let A be a G-module. The fixed point set of A is

AG := {a ∈ A | g · a = a for all g ∈ G}

It is a G-submodule of A. In fact it is the unique maximal trivial G-
submodule of A.
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The fixed point functor ·G is the functor from the category of G-modules
to the category of abelian groups (or trivial G-modules) that sends a G-
module A to the abelian group AG and sends a G-homomorphism f : A→ B
to the restriction f |AG .

The map ηA : HomZG(Z,A)→ AG given by ηA(f) = f(1) defines an equiv-
alence of functors HomZG(Z, · ) ' ·G. This provides an interpretation of
the cohomology group H0(G,A).

Corollary. H0(G,A) ∼= AG.

5.7. (Automorphisms of extensions and H1(G,A))

Let G be a group and let A be a G-module. A function δ : G → A is a
1-cocycle (that is, an element of Z1(G,A)) if and only if

δ(gh) = g · δ(h) + δ(g)

for each g, h ∈ G (see 5.3 and note that the requirement δ(1) = 0 follows
from this formula), and it is a 1-coboundary (that is, an element of B1(G,A))
if and only if there exists some a ∈ A such that

δ(g) = g · a− a

for all g ∈ G (see 5.3 and note that we have written a for f()).

Often, a 1-cocycle is referred to as a derivation (or crossed homomor-
phism) from G to A, and a 1-coboundary is then called an inner deriva-
tion (or principal crossed homomorphism). With this terminology, the
cohomology group H1(G,A) = Z1(G,A)/B1(G,A) can be described as the
group of derivations from G to A modulo the group of inner derivations.

Let
0 // A // E

π // G // 0

be an extension of G by A that respects the G-module structure on A.
Denote by Aut′(E) the group of those automorphisms ϕ of E for which the
following diagram is commutative:

0 // A //

1
��

E //

ϕ

��

G //

1
��

0

0 // A // E // G // 0.
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Let Inn′(E) denote the set {ιa | a ∈ A}, where ιa is the inner automorphism
of E given by ιa(e) = a−1ea. Then Inn′(E) is a normal subgroup of Aut′(E)

(a consequence of the theorem below). Let Aut′(E) denote the correspond-
ing quotient.

Let ϕ ∈ Aut′(E) and let σ : G→ E be a section of π (so that πσ = 1) and
assume that σ(1) = 1. For each g ∈ G there exists a unique δ(g) ∈ A such
that

ϕ(σ(g)) = δ(g)σ(g).

This defines a function δ = δϕ : G→ A with δ(1) = 0 (the operation in A is
written using additive notation).

Theorem. The function Φ : Aut′(E)→ Z1(G,A) given by Φ(ϕ) = δϕ is
an isomorphism. Under this isomorphism, Inn′(E) corresponds to B1(G,A).
In particular,

H1(G,A) ∼= Aut′(E).

If the section σ is a homomorphism (so that the extension is split), then
G1 = σ(G) is called a complement of A in E. Viewing A as a subgroup of
E, we then have AG1 = E and A ∩G1 = 1.

Corollary. If G1 and G2 are two complements of A in E, then there
exists ϕ ∈ Aut′(E) such that ϕ(G1) = G2.

Assume that G and A are finite with (|G|, |A|) = 1. The Schur-Zassenhaus
theorem (5.5) says that the extension E splits so that there exists a com-
plement G1 of A in E. Let G2 be another complement. By the corollary,
there exists ϕ ∈ Aut′(E) such that ϕ(G1) = G2. But the lemma of 5.4 gives
H1(G,A) = 0 so the theorem above implies that ϕ = ιa for some a ∈ A,
whence G2 = a−1G1a.

Corollary. In the statement of the Schur-Zassenhaus theorem, any two
complements of A in E are conjugate.

Our proof required that A be abelian, but the corollary is true in general.

6 Derived category

6.1. (Introduction)
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Associated to an abelian category A is a certain category D(A) called the
“derived category of A.” This new category is designed for doing the homo-
logical algebra of A in that it simplifies the notions of derived functors and
spectral sequences.

Here is a quick sketch of the construction. The objects of D(A) are simply
the cochain complexes of A. The morphisms are obtained from chain maps
in a two-step process. First, one mods out null homotopic chain maps,
which has the effect of making two chain maps equal when they were merely
homotopic before (this produces the “homotopy category” K(A)). Next,
one localizes at those chain maps that induce isomorphisms on homology
(the so-called “quasi-isomorphisms”). This has the effect of making quasi-
isomorphisms into actual isomorphisms.

As an illustration of the suitability of D(A) for doing homological algebra,
we have the following (assuming A has enough injectives): For any objects
A and B of A,

ExtnA(A,B) = HomD(A)(A,B[n]),

where on the right, A is the complex with A as degree zero term and zeros
elsewhere and B[n] is the complex with B as degree −n term and zeros
elsewhere.

The homotopy category K(A) is an example of a “triangulated category”
(and in turn the derived category D(A) is as well). The construction process
makes use of this additional structure.

6.2. (Shift functor)

We fix an abelian categoryA. Let Ch(A) be the category of chain complexes
in A, and let A ∈ ob Ch(A). We put An = A−n and dn = d−n and call the
resulting complex

· · · // An
dn // An+1 // · · ·

a cochain complex. (Derived categories were originally developed to deal
with cohomology and the notation best suited for that theory has persisted.)

For an integer s, let A[s] be the cochain complex with

A[s]n = An+s dnA[s] = (−1)sdn+sA ,

and for a chain map f : A → B define f [s] : A[s] → B[s] by f [s]n = fn+s.
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Then [s] is a functor from Ch(A) to itself, called the shift functor of degree
s.

6.3. (Homotopy category K(A))

Let A and B be two cochain complexes. We recall some definitions. A chain
map f : A→ B is null homotopic (written f ∼ 0) if there exist morphisms
sn : An → Bn−1 such that sn+1dnA + dn−1B sn = fn for all n. Two chain maps
f, g : A → B are homotopic (written f ∼ g) if f − g ∼ 0. The set of null
homotopic chain maps in Hom(A,B) is a subgroup. Write Hom(A,B) for
the corresponding quotient.

Let f , g, and h be chain maps with g ∼ 0. If gf is defined, then gf ∼
0. Similarly, if hg is defined, then hg ∼ 0. It follows that one obtains a
well-defined composition Hom(B,C)×Hom(A,B)→ Hom(A,C) by putting
ḡf̄ = gf .

The homotopy category K(A) of A is the category with cochain com-
plexes as objects, with morphisms HomK(A)(A,B) = Hom(A,B), and with
composition as just defined.

If f, g : A → B are chain maps and f ∼ g, then Hn(f) = Hn(g) for each
n. Therefore, we get a well-defined functor Hn : K(A) → Ab by putting
Hn(f̄) = Hn(f).

We will often write f̄ as just f and rely on phrases such as f = g in K(A)
(meaning f ∼ g) when clarification is required.

6.4. (Trianglulated category)

Let f : A → B be a morphism in Ch(A). The mapping cone of f is the
cochain complex M(f) defined by

M(f)n = An+1 ⊕Bn, dnM(f) =

[
−dn+1

A 0
fn+1 dnB

]
.

Define α(f) : B →M(f) and β(f) : M(f)→ A[1] by

α(f)n =

[
0

1Bn

]
, β(f)n =

[
1An+1 0

]
.

The sequence

A
f // B

α(f)//M(f)
β(f) // A[1]
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in K(A) is the standard triangle determined by f .

The sequences A → B → C → A[1] and A′ → B′ → C ′ → A′[1] in K(A)
are isomorphic if there exists a commutative diagram

A //

x

��

B //

��

C //

��

A[1]

x[1]
��

A′ // B′ // C ′ // A′[1]

with vertical arrows isomorphisms in K(A).

A triangle in K(A) is a sequence A
a→ B

b→ C
c→ A[1] that is isomorphic

to a standard triangle. We write such a triangle as (a, b, c), (A,B,C), or

C
+

��
A // B .

aa

The triangles in K(A) satisfy the following properties:

Theorem.

(T1) A sequence A → B → C → A[1] that is isomorphic to a triangle is
also a triangle.

(T2) For each object A, the sequence 0→ A
1→ A→ 0[1] is a triangle.

(T3) If (a, b, c) is a triangle, then so are (b, c,−a[1]) and (−c[−1], a, b).

(T4) If (a, b, c) and (a′, b′, c′) are triangles and there are morphisms x and
y such that a′x = ya, then there exists a morphism z such that the
following diagram is commutative:

A
a //

x

��

B
b //

y

��

C
c //

z

��

A[1]

x[1]
��

A′
a′ // B′

b′ // C ′
c′ // A′[1] .
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(T5) For each pair of morphisms A
a→ B

b→ C, there is a commutative
diagram

A
a //

1

��

B
y //

b

��

C ′ //

��

A[1]

1
��

A // C //

��

B′ //

��

A[1]

a[1]

��
A′

1 //

x

��

A′
x //

��

B[1]

B[1]
y[1] // C ′[1] ,

where the first two rows and the two middle columns are triangles.

Property (T5), the “Octahedral axiom,” can be visualized using the follow-
ing diagram:

B′

!!

+

��

C ′

==

+
��

A′
+

oo

+

��

A //

a !!

C

OO

XX

B .
b

==

y

XX

The four triangles with arrows going in the same direction are triangles; the
other ones are commutative. The slanted squares ABA′B′ and BCB′C ′ are
commutative.

A triangulated category is an additive category T with an auto-equivalence
T → T , A 7→ A[1] (with inverse A 7→ A[−1]) together with a class of se-
quences A → B → C → A[1] in T called triangles such that (T1)-(T5)
above hold. The theorem shows that K(A) is a triangulated category with
the degree one shift functor and the triangles defined as above.

6.5. (Localization)

Let C be a category and let S be a family of morphisms in C. A localization
of C with respect to S is a category CS and a functor Q : C → CS such that
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1. Q(s) is an isomorphism for each s in S,

2. if F : C → D is a functor such that F (s) is an isomorphism for each
s in S, then there exists a unique functor F ′ : CS → D such that
F ′ ◦Q = F .

Such a localization is unique up to equivalence. We give conditions on S
that guarantee the existence of the pair (CS , Q).

The family S is a multiplicative system if it satisfies the following prop-
erties.

(S1) 1A ∈ S for each object A of C.

(S2) If f and g are in S, then gf is in S if defined.

(S3) Any diagrams
B

A

OO

+3 C

B

��
A Cks

with horizontal arrows in S can be completed to commutative diagrams

B +3 D

A

OO

+3 C

OO B

��

Dks

��
A Cks

with horizontal arrows in S.

(S4) If f and g are morphisms in C, then there exists s in S such that
sf = sg if and only if there exists t in S such that ft = gt.

Assume that S is a multiplicative system. Let A and B be objects of C. A
pair (s, f) of morphisms

A A′
sks f // B

with s in S is a (right) fraction from A to B. Two fractions (s, f) and
(t, g) from A to B are equivalent, written (s, f) ∼ (t, g), if there exists a
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commutative diagram
A′

s

z�

f

  
A A1
ks

h

OO

k
��

// B

A′′
t

\d

g

>>

with left horizontal arrow in S. (Put more simply, the fractions are equiva-
lent if there exist h and k making the left and right triangles commute and
such that sh = tk is in S. The horizontal arrows are shown only to indicate
that a new fraction arises.) One shows that ∼ is an equivalence relation.
Denote by s−1f the equivalence class of the fraction (s, f).

If (s, f) is a fraction from A to B and (t, g) is a fraction from B to C, put

t−1g ◦ s−1f = (st1)
−1(gf1),

where t1 and f1 are as in (S3):

A′′

t1

z�

f1

!!
A′

s

z� f !!

B′

ty�

g

  
A B C

One shows that this definition is independent of the choices made.

For objects A and B of C, let HomCS (A,B) be the class of all s−1f with
(s, f) a fraction from A to B. If this class is a set for every A and B, then,
using the composition defined above, we get a category CS (having the same
objects as C).

Theorem. If HomCS (A,B) is a set for each A and B, then CS together
with the functor Q : C → CS that is the identity on objects and that sends
the morphism f to 1−1f is a localization of C with respect to S.

6.6. (Derived category)

Let A and B be cochain complexes in the abelian category A. A chain
map f : A → B is a quasi-isomorphism if the induced map Hn(f) :
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Hn(A)→ Hn(B) is an isomorphism for each n. A homotopy class of chain
maps is a quasi-isomorphism if any (and hence every) representative is a
quasi-isomorphism. Let S be the family of all quasi-isomorphisms in K(A).

Theorem. The family S is a multiplicative system in K(A).

The proof of this theorem makes use of the triangulated structure on K(A)
as follows. Let N be the collection of all exact cochain complexes, that is,
the collection of all cochain complexes C for which Hn(C) = 0 for each n.

Lemma. The chain map f : A→ B is a quasi-isomorphism if and only if
there exists a triangle

A
f // B // C // A[1]

with C ∈ N .

Proof. Let f : A→ B be a chain map and let

A
f // B //M(f) // A[1]

be the associated standard triangle. The sequence 0 → B → M(f) →
A[1]→ 0 is exact and so it gives rise to the long exact sequence

· · · → Hn−1(A[1])→ Hn(B)→ Hn(M(f))→ Hn(A[1])→ Hn+1(B)→ · · ·

which is the same as

· · · → Hn(A)→ Hn(B)→ Hn(M(f))→ Hn+1(A)→ Hn+1(B)→ · · · .

A straightforward computation shows that the connecting morphisms are
induced by f . Therefore, if f is a quasi-isomorphism, then M(f) is in N .
The proof of the converse is similar.

The derived category of A, denoted D(A), is the localization K(A)S pro-
vided this localization is defined, that is, provided the classes HomK(A)S (A,B)
are all sets (which is the case if A = R-mod with R a ring).

D(A) inherits the structure of triangulated category from K(A).
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6.7. (Ext)

In this section, we assume that the abelian category A has enough injectives
(or enough projectives with suitable adjustments). In the following theorem,
on the right hand side we identify the object A of A with the complex having
degree zero term A and zeros elsewhere, and similarly for B.

Theorem. For every integer n, we have ExtnA(A,B) ∼= HomD(A)(A,B[n]).

The proof depends on two lemmas. A (cochain) complex I is bounded
below if In = 0 for all n� 0.

Lemma. If I is a bounded below complex of injective objects and t : I →
X is a quasi-isomorphism, then there exists s : X → I with st ∼ 1I .

Proof. Since t is a quasi-isomorphism, it follows that the mapping cone
M(t) = I[1] ⊕X (see 6.4) is exact. The map β(t) : M(t) → I[1] is seen to
be null homotopic by the proof of the Comparison theorem. If (u, s) from
I[1]⊕X to I is a corresponding homotopy, then s is the desired map and u
is the homotopy showing that st ∼ 1I .

Lemma. If I is a bounded below complex of injective objects, then the
canonical map

ϕ : HomK(A)(A, I)→ HomD(A)(A, I)

is an isomorphism for every complex A.

Proof. If (t, f) is a fraction and s is as in the preceding lemma, then

ϕ(sf) = 1−1(sf) = 1−1(st)t−1f = t−1f

so ϕ is surjective.

Let f, g : A → I and assume that 1−1f = ϕ(f) = ϕ(g) = 1−1g. Then
ft1 = gt1 for some quasi-isomorphism t1, so that tf = tg for some quasi-
isomorphism t by (S4) of 6.5. With s as in the preceding lemma, we get
f ∼ stf = stg ∼ g, so ϕ is injective.

The proof of the theorem now goes as follows. The object B has an injective
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resolution B → I, which we can write

· · · // 0 //

��

B //

��

0 //

��

0 //

��

· · ·

· · · // 0 // I0 // I1 // I2 // · · · .

This chain map is a quasi-isomorphism, which is invertible in D(A). There-
fore,

HomD(A)(A,B[n]) ∼= HomD(A)(A, I[n])

∼= HomK(A)(A, I[n]) (by Lemma)

∼= Hn(HomA(A, I))

= ExtnA(A,B),

where the third isomorphism sends the homotopy class f̄ to the class of f0.
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