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0 Introduction

Let G be a finite group, let K be a field, and let V be a finite-dimensional vector space
over K. Denote by GL(V ) the group of invertible linear transformations from V to itself.
A group homomorphism ρ : G→ GL(V ) is called a linear K-representation of G in V
(or just a representation of G for short).

One gains information about the structure of G by studying the totality of representa-
tions of G (i.e., various ρ, V , and K).

Example. Suppose K = C. If every “irreducible” representation of G (that is, one
admitting no proper “subrepresentation”) is of the form ρ : G → GL(V ) with dimV = 1,
then G is abelian (and conversely).

Here are some notable applications of representation theory:

(1) (Burnside) If |G| = paqb (p, q prime), then G is solvable. (Proof given in Section
25.)

(2) (Feit-Thompson) Every group of odd order is solvable.
(3) Classification of Finite Simple Groups. (Proof uses both the “ordinary” theory

(charK = 0) and the “modular” theory (charK = p, prime).)
(4) Quantum mechanics.

Let ρ : G → GL(V ) be a representation. Define the associated character χ : G → K
by χ(a) = tr ρ(a). By passing from ρ to the associated character χ, one loses information
in general, but enough information is retained to allow proofs of important results. For
instance, the theorem of Burnside stated above uses only characters, not actual repre-
sentations. Much of the power of character theory comes from its deep connections with
number theory.

Let KG denote the group ring of G over K (so KG is the vector space over K with
basis G made into a ring by using the obvious multiplication). Given a representation
ρ : G → GL(V ) we can make V into a KG-module by putting a · v = ρ(a)(v) (a ∈ G,
v ∈ V ) and extending this definition linearly to an arbitrary element of KG. It turns out
that the study of representations of G over the field K is equivalent (in the category sense)
to the study of KG-modules. This brings into representation theory certain aspects of
homological algebra and K-theory.

In summary, representation theory involves three interrelated notions: (1) representa-
tions, (2) characters, (3) modules.
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1 Modules

Let R be a ring with identity 1. A (left) R-module is an (additive) abelian groupM with
a function R×M →M denoted (r,m) 7→ rm (or sometimes r ·m) such that the following
hold for all r, s ∈ R, m,n ∈M :

(1) r(m+ n) = rm+ rn,
(2) (r + s)m = rm+ sm,
(3) (rs)m = r(sm),
(4) 1m = m.

One proves for R-modules the natural identities, like r0 = 0 for any r ∈ R. (Proof:
r0 = r(0 + 0) = r0 + r0; now cancel.)

Example. If V is a vector space over a field K, then V is a K-module.

Example. If A is an additive abelian group, then A is a Z-module, where ra (r ∈ Z,
a ∈ A) has the usual meaning.

Example. Let V be a vector space over the field K and let R be the ring of linear
transformations from V to itself. Then V is an R-module by f · v = f(v).

Example. Any ring R (with 1) is an R-module with rs (r, s ∈ R) being the given ring
multiplication.

Warning: If V is a vector space over the field K, then αv = 0 implies v = 0 or α = 0
(α ∈ K, v ∈ V ) since if α ̸= 0, then v = α−1αv = α−10 = 0. This property does not hold
for modules in general. For instance, let v = 1̄ ∈ Z2 and α = 2 ∈ Z. Then 2 · 1̄ = 2̄ = 0̄,
but 1̄ ̸= 0 and 2 ̸= 0. Furthermore, an arbitrary module need not have a basis.

Let M be an R-module. A subset N of M is an R-submodule (written N ≤M) if the
following hold:

(1) N is a subgroup of M ,
(2) rn ∈ N for all r ∈ R, n ∈ N .

Let M and M ′ be R-modules. A function φ :M →M ′ is an R-homomorphism if the
following hold for all m,n ∈M , r ∈ R:

(1) φ(m+ n) = φ(m) + φ(n),
(2) φ(rm) = rφ(m).
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An R-isomorphism is a bijective R-homomorphism. We say that the R-modules M
and M ′ are isomorphic, written M ∼=M ′, if there exists an R-isomorphism φ :M →M ′.

If φ : M → M ′ is an R-homomorphism, then kerφ := φ−1(0) and imφ := φ(M) are
submodules of M and M ′, respectively.

If M is an R-module and N ≤ M , then M/N := {m + N |m ∈ M} is a module with
the induced operations:

(m+N) + (m′ +N) = (m+m′) +N,

r(m+N) = rm+N.

M/N is called the quotient (or factor) module of M by N .

1.1 (First Isomorphism Theorem) If φ :M →M ′ is an R-homomorphism, then
M/ kerφ ∼= imφ.

The usual second and third isomorphism theorems are valid as well. In fact, these isomor-
phism theorems are valid for any Ω-group. (Let Ω be a nonempty set. An Ω-group is a
group G with a function Ω × G → G for which x(ab)=(xa)(xb) for all x ∈ Ω, a, b ∈ G.
There are obvious notions of Ω-subgroup and Ω-homomorphism. An R-module M is an
Ω-group with Ω = R and G =M .)

Let N1 and N2 be R-modules. The direct sum

N1 ⊕N2 = {(n1, n2) |ni ∈ Ni}

is an R-module if we define r(n1, n2) = (rn1, rn2).
Let M be an R-module and let N1, N2 ≤ M . We say that M is the (internal) direct

sum of N1 and N2 (written M = N1+̇N2) if the following hold:

(1) M = N1 +N2,
(2) N1 ∩N2 = {0}.

1.2 If M = N1+̇N2, then M ∼= N1 ⊕N2.

Proof. The pairing n1 + n2 ↔ (n1, n2) is the required correspondence. �

Exercise 1

Let M be an R-module and let N ≤ M . Prove that if φ : M → N is a homomorphism such that

φ(n) = n for all n ∈ N , then M = N+̇ kerφ.
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2 The Group Algebra

Let G be a finite group and let K be a field (notation in force from here on). Denote by
KG the vector space over K with basis G. So the elements of KG are linear combinations
of the form

∑
a∈G αaa with αa ∈ K. We wish to make KG into a ring, so we define

multiplication by (∑
a∈G

αaa
)(∑
b∈G

βbb
)
=
∑
a,b∈G

(αaβb)ab.

Note that KG has identity 1e, where e is the identity element of the group G. We usually
write 1a as just a (a ∈ G) and thus view G as a subset of KG.

Example. Suppose G = S4 (=symmetric group) and K = Q. Then the following is an
example of a computation in KG.

[3(23) + (1243)] [7(24)− 5(13)]

= 21(23)(24)− 15(23)(13) + 7(1243)(24)− 5(1243)(13)

= 21(243)− 15(123) + 7(123)− 5(243)

= 16(243)− 8(123).

A K-algebra is a ring A that is also a vector space over K subject to α(ab) = (αa)b =
a(αb) for all α ∈ K and all a, b ∈ A.

Example. The ring KG is a K-algebra of dimension |G|. It is called the group algebra
of G over K.

Example. If V is a vector space over K, then the ring End(V ) of linear maps from V to
itself is a K-algebra.

Example. The ring Matn(K) of n× n matrices over K is a K-algebra of dimension n2.

Example. The ring K[x] of polynomials over K is an infinite-dimensional K-algebra.

Let A be a K-algebra with identity 1 (̸= 0). We get a ring monomorphism K → A
via α 7→ α1. (It is nonzero since it sends the identity of K to the identity of A. It is
injective since its kernel is an ideal of the field K and is therefore trivial.) We use this
monomorphism to view K as a subring of A.
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KG-modules. Let V be a vector space over K. A map G × V → V by (a, v) 7→ av is
called a group action of G on V if the following hold for all a, b ∈ G, v, w ∈ V , and
α ∈ K:

(1) (ab)v = a(bv),
(2) ev = v,
(3) a(v + w) = av + aw,
(4) a(αv) = α(av).

(The first two properties say that the given map defines an action of the group G on the
underlying set of the vector space V , while the last two properties say that each element
of G acts as a linear operator on V .)

Let V be a KG-module. By restricting the scalars from KG to K, we can view V as
a K-module, that is, as a vector space over K. It follows from the module axioms that
restricting scalars from KG to G yields a group action G × V → V of G on V . The
following result says that, conversely, a group action of G on a vector space V induces a
KG-module structure on V .

2.1 Let V be a vector space over K and let G× V → V be a group action of G on V .
Then V is a KG-module with scalar multiplication given by(∑

a∈G
αaa

)
v =

∑
a∈G

αaav.

(This scalar multiplication is said to be “extended linearly” from the action of G on V .)

Proof. We verify only module axiom (3), namely (rs)v = r(sv) (r, s ∈ KG, v ∈ V ),
since the verifications of the other axioms are straightforward. Let r, s ∈ KG so that
r =

∑
a αaa and s =

∑
b βbb ∈ KG for some αa, βb ∈ K. For any v ∈ V , we have

(rs)v =

(∑
a,b

αaβb(ab)

)
v

=

(∑
c

( ∑
a,b

ab=c

αaβbc
))
v (collect like terms)

=
∑
c

( ∑
a,b

ab=c

αaβb
)
cv (linear extension)

=
∑
c

∑
a

αaβa−1ccv

=
∑
a

αa
(∑

c

βa−1ccv
)

=
∑
a

αa
(∑

b

βb(ab)v
)

(b = a−1c)
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=
∑
a

αa
(∑

b

βba(bv)
)

((1) of group action)

=
∑
a

αaa
(∑

b

βbbv
)

((3) and (4) of group action)

=
(∑

a

αaa
)((∑

b

βbb
)
v

)
(linear extension, twice)

= r(sv),

so module axiom (3) holds. �
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3 Tensor Product and Contragredient

Recall (Section 2) that any KG-module can be viewed as a vector space over K. For us,
KG-modules will always be assumed to be finite-dimensional (over K) when viewed thus.
Here, we look at two ways of constructing new KG-modules from old ones.

Tensor Product. Let V and W be KG-modules with bases {v1, . . . , vm} and {w1, . . . ,
wn}, respectively. Let V⊗W be the vector space with basis {vi⊗wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
V ⊗W is the tensor product of V and W .

For arbitrary v ∈ V , w ∈ W , write v =
∑
i αivi, w =

∑
j βjwj and define v ⊗ w =∑

i,j αiβjvi ⊗ wj ∈ V ⊗W . (Caution: It is not the case that every element of V ⊗W can

be expressed in the form v ⊗ w with v ∈ V and w ∈W .)

3.1 For all v, v′ ∈ V , w,w′ ∈W , and α ∈ K, we have

(1) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,
(2) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
(3) α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw).

For a ∈ G, the map of basis vectors given by vi ⊗ wj 7→ avi ⊗ awj extends uniquely
to a linear map from V ⊗W to itself, which we denote by u 7→ au (u ∈ V ⊗W ). Then
(a, u) 7→ au defines a group action of G on the vector space V ⊗ W (note that once
properties (3) and (4) are checked it suffices to verify properties (1) and (2) under the
assumption that v is a basis vector). According to 2.1 the linear extension to KG of this
action gives V the structure of KG-module.

Contragredient. Let V be a KG-module and set V ∗ = {f : V → K | f is linear}. V ∗

is the dual space of V . For a ∈ G and f ∈ V ∗, the function af : V → K defined by
(af)(v) = f(a−1v) is an element of V ∗. Then the map (a, f) 7→ af defines a group action
of G on the vector space V ∗. According to 2.1 the linear extension to KG of this action
gives V ∗ the structure of KG-module. This module is the contragredient of V . We have
V ∼= V ∗∗ via v 7→ (f 7→ f(v)).

Remark. These two constructions are available for any Hopf algebra (of which the
group algebra is an example), but not for an arbitrary algebra. A Hopf algebra A has
a certain algebra homomorphism, △ : A → A ⊗ A (comultiplication) and an algebra
antihomomorphism σ : A → A (antipode). In the case A = KG we obtain these maps by
putting △(a) = a⊗a and σ(a) = a−1 (a ∈ G) and extending linearly to KG. LetM and N
be A-modules. ThenM⊗N is an A⊗A-module by (a⊗b)(m⊗n) = am⊗bn (even without



3 Tensor Product and Contragredient 8

the additional Hopf structure); it becomes anA-module by putting a(m⊗n) = △(a)(m⊗n).
Also, M∗ becomes an A-module by putting (af)(m) = f(σ(a)m).
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4 Representations and Modules

Let ρ : G → GL(V ) be a representation (Section 0). Putting av = ρ(a)(v) (a ∈ G, v ∈ V )
we obtain a group action of G on the vector space V . According to 2.1, the linear extension
to KG of this action gives V the structure of KG-module.

Conversely, let V be a KG-module. Then V can be viewed as a (finite-dimensional)
vector space over K. Define ρ : G → GL(V ) by ρ(a)(v) = av. Then ρ is a well-defined
homomorphism, and hence a representation of G. We call ρ the representation afforded
by V .

We can use the language of categories to make the correspondence described above
more precise. Let KG-mod denote the category having as objects KG-modules and as
morphisms KG-homomorphisms. Let G-rep denote the category having as objects rep-
resentations of G and morphisms described as follows: Given objects ρ : G → GL(V ),
ρ′ : G → GL(V ′), the set Mor(ρ, ρ′) of morphisms from ρ to ρ′ consists of those linear
maps f : V → V ′ such that f ◦ ρ(a) = ρ′(a) ◦ f for all a ∈ G.

We claim that the categories KG-mod and G-rep are equivalent. Define a functor
F : KG-mod→ G-rep by

F :

{
V 7→ ρ, where ρ is afforded by V ,

f 7→ f, for a KG-homomorphism f : V → V ′.

We need to check that F (f) = f ∈ Mor(ρ, ρ′) = Mor(F (V ), F (V ′)). Clearly f is linear.
Also, for v ∈ V we have

[f ◦ ρ(a)](v) = f(ρ(a)(v)) = f(av) = af(v)

= ρ′(a)(f(v)) = [ρ′(a) ◦ f ](v).

We also get a functor F ′ : G-rep→ KG-mod by

F ′ :

{
ρ : G→ GL(V ) 7→ V,

f 7→ f.

It is easy to check that F ′◦F = 1KG-mod and F ◦F ′ = 1G-rep, so thatKG-mod∼= G-rep,
as desired.

Exercise 2

Fill in the details of the “representation ↔ module” correspondence outlined in the first two paragraphs

of this section.
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5 Matrix Representations

Let V be a vector space over the field K with (ordered) basis B = {v1, . . . , vn}. For v ∈ V
we have v =

∑
i βivi for uniquely determined βi ∈ K. Write

[v]B =

 β1...
βn


(the coordinate vector of v relative to B).

Let f : V → V be a linear transformation. For v ∈ V we have

[f(v)]B = [αij ][v]B ,

where f(vj) =
∑
i αijvi (1 ≤ j ≤ n). We call [αij ] the matrix of f relative to B.

Now suppose ρ : G → GL(V ) is a representation of G. For each a ∈ G, let [αij(a)] be
the matrix of ρ(a) relative to B. Then, denoting by GLn(K) the group of invertible n×n-
matrices over K, we get a homomorphism R : G → GLn(K) by putting R(a) = [αij(a)].
R is called the matrix representation of G afforded by ρ (or by V ) relative to B.

Example. Let G = Z3 = {0̄, 1̄, 2̄}. The vector space V = KG is a KG-module (with
module product being the ring product inKG). The matrix representation R of G afforded
by V relative to the basis {0̄, 1̄, 2̄} is given by

R(0̄) =

 1 0 0
0 1 0
0 0 1

 , R(1̄) =

 0 0 1
1 0 0
0 1 0

 , R(2̄) =

 0 1 0
0 0 1
1 0 0

 .
Notice that these are “permutation matrices” (exactly one 1 appears in each row and each
column with zeros elsewhere).

In general, for any group G the matrix representation R of G afforded by KG relative
to the basis G has the property that R(a) is a permutation matrix for each a ∈ G.

Submodules. Let V be a KG-module and let W be a submodule of V . Let {v1, . . . , vm}
be a basis of W and extend this to get a basis B = {v1, . . . , vm, vm+1, . . . , vn} of V . If R
is the corresponding matrix representation, then for each a ∈ G, R(a) is of block form

R(a) =

[
∗ ∗
0 ∗

]
.
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Let ρ be the representation of G afforded by V . For each a ∈ G, we have ρ(a)(W ) =
aW ⊆ W , so we get a representation σ : G → GL(W ) by defining σ(a) = ρ(a)|W (the
subrepresentation of G afforded by the submodule W of V ). Relative to the basis
{v1, . . . , vm} of W , σ affords the matrix representation represented by the upper left block
in the depiction of R(a) above.

Keep the notation above and assume there exists a submodule W ′ of V such that
V = W +̇W ′. Also assume that {vm+1, . . . , vn} is a basis for W ′. Then B is still a basis
for V and for each a ∈ G, R(a) is of block form

R(a) =

[
∗ 0
0 ∗

]
.

Tensor Products. Let V and W be KG-modules with bases {v1, . . . , vm}, {w1, . . . ,
wn}, respectively. Then {vi ⊗ wj} is a basis for V ⊗W . Order this set lexicographically:
{v1⊗w1, v1⊗w2, . . . , v2⊗w1, v2⊗w2, . . . }. Let [αij ] and [βkl] be the matrix representations
afforded by V and W , respectively, relative to the given bases. We wish to determine the
matrix representation [γij,kl] afforded by V ⊗W relative to the above basis. By definition,
for each a ∈ G, we have

a(vk ⊗ wl) =
∑
i,j

γij,kl(a)vi ⊗ wj .

But also,

a(vk ⊗ wl) = avk ⊗ awl

=
(∑
i

αik(a)vi
)
⊗
(∑
j

βjl(a)wj
)

=
∑
i,j

αik(a)βjl(a)vi ⊗ wj .

Since {vi ⊗ wj} is linearly independent, we have γij,kl(a) = αik(a)βjl(a). The matrix
[γij,kl(a)] is called the tensor (or Kronecker) product of the matrices [αik(a)] and
[βjl(a)], written [αik(a)]⊗ [βjl(a)].

Example.

[
1 2
3 4

]
⊗

 1 2 3
4 5 6
7 8 9

 =


1 2 3 2 4 6
4 5 6 8 10 12
7 8 9 14 16 18
3 6 9 4 8 12
12 15 18 16 20 24
21 24 27 28 32 36

 .
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Exercise 3

Let V be a KG-module. Let [αij ] be the matrix representation of G afforded by V relative to the basis

{v1, . . . , vn}. Let [α∗
ij ] be the matrix representation of G afforded by the contragredient module V ∗

(Section 3) relative to the “dual basis” {v∗1 , . . . , v∗n} (so v∗i (vj) = δij = Kronecker delta). Express [α∗
ij ]

in terms of [αij ].
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6 Schur’s Lemma

From Section 8 on we will assume K = C. In this section and the next, we see why this
assumption simplifies matters. We begin by reviewing “algebraically closed fields” and
“eigenvalues.”

Algebraically Closed Fields. The field K is algebraically closed if each nonconstant
f ∈ K[x] (= set of polynomials in x over K) has a zero.

Example. The field R of real numbers is not algebraically closed since x2+1 has no zero.

Remark. If α is a zero of f ∈ K[x], then x−α is a factor. (Proof: Use division algorithm.)
So, using induction on the degree of f , we have that K is algebraically closed if and only if
each nonconstant f ∈ K[x] can be written in the form f = α0(x−α1)(x−α2) · · · (x−αn)
(αi ∈ K).

6.1 Fundamental Theorem of Algebra. The field C of complex numbers is alge-
braically closed.

Proof. The name given to this theorem is a bit of a misnomer since there is no known
“purely algebraic” proof. Nor is it likely that there could be such since the complex
numbers are constructed from the real numbers, which are defined as the completion of
the rational numbers, and so topology ultimately enters in. Here is a quick proof using
complex analysis.

Liouville’s Theorem states that every bounded entire (i.e., differentiable) function f :
C → C is constant. Suppose f ∈ C[x] has no zero. Since |f(x)| → ∞ as |x| → ∞ and im f
is bounded away from zero, 1/f is bounded (and clearly entire). Therefore, by Liouville’s
Theorem, 1/f is constant, so that f is as well. �

Eigenvalues. Let V be a vector space over K and let f : V → V be a linear transforma-
tion. An element α of K is an eigenvalue of f if f(v) = αv for some nonzero v ∈ V . If
the matrix A represents f relative to some basis B of V , then

α ∈ K is an eigenvalue of f ⇐⇒ f(v) = αv for some v ̸= 0

⇐⇒ [f(v)]B = α[v]B for some v ̸= 0

⇐⇒ A[v]B = α[v]B for some v ̸= 0
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⇐⇒ (A− αI)[v]B = 0 for some v ̸= 0

⇐⇒ (A− αI) is not invertible

⇐⇒ det(A− αI) = 0,

⇐⇒ α is a zero of the polynomial g(x) = det(A− xI).

In particular, if K is algebraically closed, then each linear transformation f : V → V has
an eigenvalue.

Now that the background material has been reviewed, we turn to the main subject of
the section.

A nonzero KG-module V is simple if it has no (nonzero) proper submodule. If V is
simple and it affords the representation ρ, we say that ρ is irreducible. In other words,
a representation is irreducible if it admits no (nonzero) proper subrepresentation in the
sense of Section 5.

6.2 Schur’s Lemma. Let V and W be simple KG-modules and let f : V → W be a
homomorphism.

(1) If V ̸∼=W , then f = 0.
(2) Assume K is algebraically closed. If V =W , then f = α1V for some α ∈ K (so f

is a “homothety”).

Proof. (1) Assume f ̸= 0. Since ker f is a submodule of V not equal to V , we must
have ker f = 0, so that f is injective. Similarly, im f is a submodule of W not equal to 0,
so im f =W implying f is surjective. Thus, V ∼=W .

(2) Assume V =W . Since K is assumed to be algebraically closed, f has an eigenvalue,
say α. Then ker(f−α1V ) ̸= 0. Since V is simple, we get f−α1V = 0, whence f = α1V . �
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7 Maschke’s Theorem

Let R be a ring and let M be a nonzero R-module. A sequence

0 =M0 < M1 < · · · < Mn =M

of submodules of M is called a composition series if each factor Mi/Mi−1 is simple (i.e.,
has no proper (nonzero) submodule). If M has a composition series as above, then the
simple factors Mi/Mi−1 (1 ≤ i ≤ n) are called the composition factors of M . (By the
Jordan-Hölder Theorem, which applies to Ω-groups and hence to R-modules, composition
factors are independent of the chosen composition series and are hence well-defined.) It is
possible to have two nonisomorphic modules with the same composition factors.

Example. The Z-modules Z4 and Z2 ⊕ Z2 have respective composition series

0 < ⟨2̄⟩ < Z4,

0 < ⟨(0̄, 1̄)⟩ < Z2 ⊕ Z2

and hence they both have the two composition factors Z2, Z2. However, Z4 ̸∼= Z2 ⊕ Z2

(since, for instance, 2x = 0 for all x ∈ Z2 ⊕ Z2, but not for x = 1̄ ∈ Z4).

Suppose R has the property that every nonzero R-module has a composition series and
hence composition factors (which is the case for our main object of study, R = KG, since
we assume KG-modules to be finite-dimensional over K). In this case, one can determine
all possible R-modules by first determining the simple ones and then determining all ways
these simple modules can be “stacked” to form new modules. (This latter endeavor falls
in the domain of “homological algebra.” Given R-modules M and N , one studies the
extension group Ext1(N,M), which is an abelian group with the property that its elements
are in one-to-one correspondence with the R-modules having a submodule isomorphic
to M and corresponding factor module isomorphic to N . For the example above, we
have Ext1(Z2,Z2) ∼= Z2 = {0̄, 1̄}. The element 1̄ corresponds to Z4 and the element 0̄
corresponds to Z2 ⊕ Z2.)

Now suppose R has the property that every nonzero R-module is isomorphic to a direct
sum of finitely many simple modules (which is the case for R = KG when charK - |G|,
as shown in the main result below). In this case, each nonzero module has a composition
series and the composition factors are precisely the various simple modules appearing in
the corresponding direct sum. Indeed, if M =

⊕n
i=1Mi with Mi simple, then viewing Mi

as a submodule of M in the natural way and putting Ni =
∑
j≤iMj we get a composition
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series 0 = N0 < N1 < · · · < Nn = M with Ni/Ni−1
∼= Mi. Therefore, in this case

a nonzero R-module is completely determined by its composition factors (implying that
all R-modules are known once the simple ones have been determined, i.e., the “stacking
problem” mentioned above is trivial). This observation points up the importance of the
following result.

7.1 Maschke’s Theorem. If charK - |G|, then every KG-module is a direct sum of
simple modules.

Proof. Let M be a KG-module and let N be a submodule of M . By induction on
dimKM , it suffices to show that N has a complement, i.e., that there exists N ′ ≤M with
M = N+̇N ′. For this, it is enough by Exercise 1 to find a KG-homomorphism f :M → N
such that f(n) = n for all n ∈ N .

Let V ⊆ M be a vector space complement of N , so that M = N+̇V as vector spaces.
Let π :M → N be the projection onto the first summand: π(n+ v) = n (n ∈ N , v ∈ V ).

Since charK - |G|, |G| is nonzero when viewed as an element of K. Hence, it makes
sense to define f :M → N by

f =
1

|G|
∑
a∈G

a−1πa

(meaning f = 1
|G|
∑
a∈G ρ(a

−1) ◦ π ◦ ρ(a), where ρ is the representation afforded by M).

We will show that f is a homomorphism. First, f is clearly linear, so it is enough to
show that f(bm) = bf(m) for all b ∈ G, m ∈M . We have

f(bm) =
1

|G|
∑
a∈G

a−1πa(bm) =
1

|G|
∑
a∈G

b(ab)−1π(ab)m

= b
1

|G|
∑
c∈G

c−1πcm

= bf(m),

so f is a homomorphism, as desired.
Finally,

f(n) =
1

|G|
∑
a

a−1πan =
1

|G|
∑
a

a−1π(an) =
1

|G|
∑
a

a−1an = n

and the proof is complete. �
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8 Characters

From now on, we restrict our attention to the field K = C so that both Schur’s Lemma
and Maschke’s Theorem apply. (Actually, for fixed G we could choose any algebraically
closed field of characteristic not dividing |G| and get essentially the same theory.)

Let A = [αij ] be an n×n-matrix over C. The trace of A is defined by trA =
∑n
i=1 αii.

We first establish some standard facts about the trace.

8.1 For any n× n-matrices A and B, we have tr(AB) = tr(BA).

Proof. Let A = [αij ] and B = [βij ] be n× n-matrices. We have

tr(AB) = tr
[∑

k

αikβkj
]
=
∑
i

∑
k

αikβki =
∑
k

∑
i

βkiαik

= tr
[∑

i

βkiαil
]
= tr(BA). �

8.2 For n× n-matrices A and C with C nonsingular, we have tr(C−1AC) = trA.

Proof. This follows directly from 8.1. �

8.3 If A is an n × n-matrix, then trA =
∑n
i=1 λi, where the λi are the zeros of the

polynomial g(x) = det(xI −A) repeated according to multiplicity.

Proof. Let A = [αij ] be an n× n-matrix. By definition,

g(x) =
∑
σ∈Sn

sgn(σ)b1σ(1) · · · bnσ(n),

where sgn(σ) is 1 or −1 according as σ is even or odd, and bij = δijx − αij . If σ ̸= 1,
then σ moves at least two numbers, whence b1σ(1) · · · bnσ(n) is of degree at most n − 2 in
x. Thus,

g(x) =
∏
i

bii + h1(x) =
∏
i

(x− aii) + h1(x) = xn −
∑
i

aiix
n−1 + h2(x),

where hi(x) has degree at most n− 2. But we also have

g(x) =
∏
i

(x− λi) = xn −
∑
i

λix
n−1 + h3(x),
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where h3(x) has degree at most n− 2. Hence, trA =
∑
i aii =

∑
i λi, as desired. �

Remark. In the notation of 8.3, v 7→ Av defines a linear transformation from Cn to
Cn; the result says that trA equals the sum of the eigenvalues (repeated according to
multiplicity) of this linear transformation (in short, the eigenvalues of A). We also point
out that 8.3 follows immediately from 8.2 and the theorem from linear algebra that says
A is similar to a matrix in Jordan canonical form.

Now let V be a vector space over C and let f : V → V be a linear map. Define
tr f = trA, where A is the matrix of f relative to some basis B of V . By 8.2, tr f is well-
defined, for if a different basis B′ is chosen, then the matrix of f relative to B′ is C−1AC,
where C is the change of basis matrix that changes B′ coordinates to B coordinates.

Assume V is a CG-module and let ρ be the representation it affords. The map χ : G→
C defined by χ(a) = tr ρ(a) is the character of G afforded by V (or by ρ).

8.4 Let V1 and V2 be CG-modules and let χ1 and χ2, respectively, be the characters
they afford. Then

(1) V1 ⊕ V2 affords the character χ1 + χ2,
(2) V1 ⊗ V2 affords the character χ1χ2.

Proof. (1) Let Ri be the matrix representation of G afforded by Vi relative to the
basis Bi (i = 1, 2). Then, viewing V1 as a subspace of V = V1 ⊕ V2 by identifying v1
with (v1, 0), and similarly for V2, we have that B = B1 ∪B2 is a basis for V . The matrix
representation R of G afforded by V relative to B is easily seen to satisfy

R(a) =

[
R1(a) 0

0 R2(a)

]
.

So if χ is the character afforded by V , then χ(a) = trR(a) = trR1(a) + trR2(a) =
χ1(a) + χ2(a).

The proof of (2) is similar. �

Next, we assemble some standard facts about characters.

8.5 Let V be a CG-module and let χ be the character it affords.

(1) χ(e) = dimC V .
(2) For each a ∈ G, χ(a) is a sum of roots of unity.

(3) For each a ∈ G, χ(a−1) = χ(a), where bar indicates complex conjugate (a+ bi =
a− bi).

(4) For each a, g ∈ G, χ(g−1ag) = χ(a).

Proof. (1) Let ρ be the representation afforded by V . We have χ(e) = tr ρ(e) =
tr 1V = tr In = n, where n = dimC V .

(2) Let ρ be as above and let a ∈ G. If λ is an eigenvalue of ρ(a), then for some
0 ̸= v ∈ V we have ρ(a)(v) = λv. Hence

λmv = ρ(a)m(v) = ρ(am)(v) = ρ(e)(v) = v,
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where m is the order of a. This implies λm = 1, so that λ is an mth root of unity. Finally,
χ(a) = tr ρ(a), which by 8.3 is the sum of the eigenvalues of ρ(a) and hence a sum of roots
of unity.

(3) Let a ∈ G. With ρ, λ, and v as above, we have

ρ(a−1)(v) = ρ(a)−1(v) = λ−1v.

Hence, λ is an eigenvalue of ρ(a) if and only if λ−1 is an eigenvalue of ρ(a−1). Furthermore,
by the proof of (2), |λ| = 1, so the equation λλ = |λ|2 = 1 gives λ−1 = λ. As in 8.3, we
have

χ(a−1) = tr ρ(a−1) =
∑
i

λi =
∑
i

λi = tr ρ(a) = χ(a).

(4) Let a, g ∈ G and let ρ be as above. Using 8.2, we have

χ(g−1ag) = tr ρ(g−1ag) = tr
[
ρ(g)−1ρ(a)ρ(g)

]
= tr(C−1AC) = trA = tr ρ(a) = χ(a),

where A and C are the matrices of ρ(a) and ρ(g), respectively, relative to some basis of
V . �

Exercise 4

Let U and V be CG-modules and set W = HomC(U, V ) (= set of C-linear maps from U to V ). Since

V is a vector space, W becomes a vector space in the natural way. We could also use the CG action on

V to make W into a CG-module, but instead we define (af)(u) = a(f(a−1u)) (a ∈ G, f ∈ W , u ∈ U)

and extend linearly to CG.

(a) This operation makes W into a CG-module. Verify only the following step: (ab)f = a(bf)

(a, b ∈ G, f ∈ W ).

(b) Prove that W ∼= U∗ ⊗ V as CG-modules.

(c) Explain how this construction generalizes the notion of a contragredient module (Section 3).

(d) Express the character afforded by W in terms of the characters afforded by U and V , respectively.
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9 Orthogonality Relations

The set Fun(G,C) of all functions from G to C inherits from C the structure of vector
space over C. In this section we define an inner product on this space and show that the
set of irreducible characters of G (i.e., those characters afforded by simple CG-modules)
forms an orthonormal set relative to this inner product.

The main lemma is the following result. Note that the characteristic of C being zero
allows the division by |G| in the statement of the result, and also notice that the fact C is
algebraically closed (6.1) allows the use of Schur’s lemma in the proof.

9.1 Let V and V ′ be CG-modules and let f : V → V ′ be a linear map. Set

f0 =
1

|G|
∑
a∈G

a−1fa : V → V ′.

(1) f0 is a CG-homomorphism.
(2) Assuming V and V ′ are simple, we have

f0 =

{
0, V ′ ̸∼= V,

tr f

n
1V , V ′ = V,

where n = dimC V .

Proof. (1) This proof is similar to that of Maschke’s theorem (7.1).
(2) By part (1) and Schur’s Lemma (6.2), if V ̸∼= V ′, then f0 = 0 and if V ′ = V , then

f0 = α1V for some α ∈ C. We have

α · n = tr f0 =
1

|G|
∑
a∈G

tr(a−1fa) =
1

|G|
∑
a∈G

tr f = tr f,

so α = (tr f)/n, as desired. �

Given two functions φ,ψ : G→ C, set

⟨φ,ψ⟩ = 1

|G|
∑
a∈G

φ(a−1)ψ(a).
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9.2 Let V and V ′ be simple CG-modules and let R = [αij ] and R
′ = [α′

ij ], respectively,
be the matrix representations they afford (relative to chosen bases). Then for all i, j, k,
and l, we have

⟨α′
ij , αkl⟩ =

{
0, V ′ ̸∼= V,
1
nδilδjk, V ′ = V.

Proof. Let n = dimC V and n′ = dimC V
′. Fix j and k and let C be the n′×n-matrix

defined by C = [δxjδyk]xy, where the final subscripts indicate that the row index is x and
the column index is y. Now C can be viewed as the matrix relative to the chosen bases of
a linear transformation f : V → V ′. Therefore, 9.1 implies

1

|G|
∑
a∈G

R′(a−1)CR(a) =

 [0], V ′ ̸∼= V,

trC

n
In, V ′ = V,

where In denotes the n× n identity matrix. The left hand side of this formula becomes

1

|G|
∑
a∈G

[∑
x,y

α′
ix(a

−1)δxjδykαyl(a)

]
il

=

[
1

|G|
∑
a∈G

α′
ij(a

−1)αkl(a)

]
il

=
[
⟨α′
ij , αkl⟩

]
il
.

Since trC =
∑
x δxjδxk = δjk, we have

[
⟨α′
ij , αkl⟩

]
il
=

{
[0], V ′ ̸∼= V,[
1
nδjkδil

]
il
, V ′ = V.

An il-entry comparison finishes the proof. �

The set Fun(G,C) of functions from G to C is regarded as a vector space over C in the
usual way. The pairing

(φ,ψ) =
1

|G|
∑
a∈G

φ(a)ψ(a)

defines an “inner product” on Fun(G,C), meaning, for all φ,φ′, ψ, ψ′ ∈ Fun(G,C), α ∈ C,

(1) (φ+ φ′, ψ) = (φ,ψ) + (φ′, ψ)
(2) (φ,ψ + ψ′) = (φ,ψ) + (φ,ψ′)
(3) (αφ,ψ) = α(φ,ψ)
(4) (φ, αψ) = α(φ,ψ)

(5) (φ,ψ) = (ψ,φ)
(6) (φ,φ) ≥ 0 with equality if and only if φ = 0.

(Note that some of these axioms are redundant. For instance, (2) follows from (1) and
(5).)
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9.3 If χ and χ′ are characters, then (χ, χ′) = ⟨χ, χ′⟩.

Proof. By 8.5(3),

(χ, χ′) =
1

|G|
∑
a∈G

χ(a)χ′(a) =
1

|G|
∑
a

χ(a)χ′(a−1) = ⟨χ, χ′⟩. �

9.4 Let V and V ′ be simple CG-modules affording the characters χ and χ′, respec-
tively. Then

(χ, χ′) =

{
1, V ∼= V ′

0, V ̸∼= V ′.

Proof. With the notation as in 9.2, we have

(χ, χ′) = ⟨χ, χ′⟩ = ⟨
∑
i

αii,
∑
j

α′
jj⟩ =

∑
i,j

⟨αii, α′
jj⟩,

where we have used 9.3. First suppose V ∼= V ′. Then χ = χ′ (see Exercise 5 below), so we
may assume V = V ′. Then 9.2 implies that

(χ, χ′) =
∑
i,j

1

n
δijδij =

∑
i

1

n
= 1.

Finally, if V ̸∼= V ′, then 9.2 implies ⟨αii, α′
jj⟩ = 0, so (χ, χ′) = 0. �

9.5 Let V1, . . . , Vt be pairwise nonisomorphic simple CG-modules affording the charac-
ters χ1, . . . , χt, respectively, and let m1, . . . ,mt ∈ N. Set V =

⊕
imiVi, where miVi means

Vi ⊕ · · · ⊕ Vi (mi summands) and let χ be the character afforded by V . Then mi = (χ, χi)
for all 1 ≤ i ≤ t.

Proof. By 8.4, χ =
∑
jmjχj , so (χ, χi) =

∑
jmj(χj , χi) = mi, by 9.4. �

By Maschke’s Theorem (Section 7), any CG-module is isomorphic to a direct sum of
simple modules. Moreover, according to 9.5, the number of times a given simple module
appears is independent of the decomposition. (Actually, we already knew this from the
Jordan-Hölder theorem. See the remarks in Section 7.)

9.6 Let V and V ′ be CG-modules affording the characters χ and χ′, respectively. Then
χ = χ′ if and only if V ∼= V ′.

Proof. The proof that χ = χ′ if V ∼= V ′ is Exercise 5 below.
Now assume that χ = χ′. We can write V ∼=

⊕t
i=1miVi and V

′ ∼=
⊕t

i=1m
′
iVi, where

V1, . . . , Vt are pairwise nonisomorphic simple modules and mi and m′
i are nonnegative

integers. If Vi affords the character χi, then using the fact that isomorphic CG-modules
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afford the same character (first part of this proof) and 9.5 we get mi = (χ, χi) = (χ′, χi) =
m′
i for all i. Therefore, V

∼= V ′. �

The character afforded by a simple module is called irreducible. We denote the set of
all irreducible characters of G by Irr(G).

In the next result, we use the terminology that a subsetX of Fun(G,C) is orthonormal
if (φ,ψ) = δφψ for all φ,ψ ∈ X.

9.7 Irr(G) is orthonormal.

Proof. Use 9.4 and 9.6. �

9.8 There are only finitely many pairwise nonisomorphic simple CG-modules.

Proof. First, Irr(G) is linearly independent. Indeed, if
∑
i αiχi = 0 (αi ∈ C, χi ∈

Irr(G)), then 9.7 implies αj = (
∑
αiχi, χj) = 0 for each j. Also, if for a ∈ G we define

fa : G → C by fa(b) = δab, then {fa | a ∈ G} clearly spans Fun(G,C). In particular, we
have | Irr(G)| ≤ dimC Fun(G,C) ≤ |G|. �

Remark. Here is another proof of 9.8 not using character theory. Let S be a simple
module and choose 0 ̸= x ∈ S. The map φ : CG → S given by φ(r) = rx is a CG-
epimorphism. Hence S is isomorphic to a quotient of the CG-module CG. Now CG
is finite-dimensional (dimC CG = |G|), so CG has a composition series. Clearly, S is
a composition factor of CG. Since CG has only finitely many composition factors, the
corollary follows.

Exercise 5

Let V and V ′ be isomorphic CG-modules. Prove that the characters they afford are equal.
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10 The Number of Simple Modules

In the last section, we found that there are only finitely many simple CG-modules (up to
isomorphism). In this section, we show that the number of simple modules is precisely the
number of conjugacy classes of G.

Recall that a, b ∈ G are conjugate if b = g−1ag for some g ∈ G. Conjugacy is an
equivalence relation on G and hence the equivalence classes (called conjugacy classes)
partition G. A function f : G → C is a class function if it is constant on conjugacy
classes, that is, f(g−1ag) = f(a) for all a, g ∈ G. Let Cl(G) ⊆ Fun(G,C) be the set of
all class functions on G. By 8.5(4), χ ∈ Cl(G) for any character χ of G. In particular,
Irr(G) ⊆ Cl(G). By 9.7, Irr(G) is linearly independent. We wish to show that, in fact,
Irr(G) is a basis for Cl(G). First, a lemma.

10.1 Let V be a simple CG-module affording the character χ. Let f ∈ Cl(G) and

define h =
∑
a∈G f(a)a : V → V . Then h = |G|

n (f, χ̄)1V , where n = dimC V .

Proof. We first show that h is a CG-homomorphism. Since h is clearly linear, it
suffices to show that h(bv) = bh(v) for all b ∈ G, v ∈ V . We have

h(bv) =
∑
a∈G

f(a)a(bv) =
∑
a

f(a)bb−1abv

= b
∑
a

f(b−1ab)b−1abv = b
∑
c∈G

f(c)cv = bh(v).

By Schur’s Lemma (6.2), we have h = α1V for some α ∈ C. But

αn = trh =
∑
a∈G

f(a)χ(a) = |G|(f, χ̄),

so the result follows. �

10.2 Irr(G) is a basis for Cl(G).

Proof. By 9.7, it is enough to show that Irr(G) spans Cl(G), and for this, it suffices
to show that the orthogonal complement of ⟨Irr(G)⟩ is zero. So let f ∈ Cl(G) and assume

(χ, f) = 0 for all χ ∈ Irr(G). Let V = CG and set h =
∑
a∈G f(a)a : V → V . If S is

a simple submodule of V affording the character χ, then 10.1 says that the restriction of

h to S equals |G|
n (f̄ , χ̄)1S , where n = dimC S. Since (f̄ , χ̄) = (χ, f), this restriction is 0.
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Now V is a direct sum of simple modules by Maschke’s Theorem (7.1), so h : V → V is the

zero map. Hence,
∑
a f(a)a = h(e) = 0. This implies that f̄ (and therefore f) is 0. �

If C is a conjugacy class of G and f ∈ Cl(G), we define f(C) := f(a), where a is
any element of C. This notation is clearly well-defined. (We get agreement with the usual
meaning of f(C) as {f(a) | a ∈ C} provided we are willing to identify the number f(a) ∈ C
with the set {f(a)}.)

10.3 The number of isomorphism classes of simple CG-modules equals the number of
conjugacy classes of G.

Proof. Let C1, . . . , Ct be the distinct conjugacy classes of G so that, in particular,
G = ∪̇iCi. For each i, let fi ∈ Cl(G) be defined by fi(Cj) = δij . Then {fi | 1 ≤ i ≤ t} is
a basis for Cl(G). Indeed, if

∑
i αifi = 0 (αi ∈ C), then αj =

∑
i αifi(Cj) = 0, so the set

is linearly independent. Also, if f ∈ Cl(G), then f =
∑
i f(Ci)fi, so the set spans. Now

9.6 implies that the number of isomorphism classes of simple CG-modules is | Irr(G)|, and
then 10.2 implies | Irr(G)| = dimC Cl(G). By what we have just shown, dimC Cl(G) is t,
the number of conjugacy classes of G. �
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11 Further Orthogonality Relations

Let C1, . . . , Ct be the distinct conjugacy classes of G and let χ1, . . . , χt be the distinct
irreducible characters of G (cf. 10.3).

11.1
∑
k χk(Ci)χk(Cj) =

|G|
|Cj |

δij.

Proof. As in the proof of 10.3, for each 1 ≤ j ≤ t, let fj ∈ Cl(G) be given by
fj(Ci) = δij . By 10.2, fj =

∑
k αkχk for some αk ∈ C. Note that

αk = (
∑
i

αiχi, χk) = (fj , χk) =
1

|G|
∑
a∈G

fj(a)χk(a) =
|Cj |
|G|

χk(Cj),

so fj =
|Cj |
|G|
∑
k χk(Cj)χk. Evaluation at Ci gives the result. �

If χ is a character of G afforded by the CG-module V , then according to 8.5, χ(e) =
dimC V . The number χ(e) is called the degree of χ. For each 1 ≤ i ≤ t, set ni = χi(e).

11.2
t∑
i=1

n2i = |G|.

Proof. If C1 = {e}, then∑
i

n2i =
∑
i

χi(e)χi(e) =
∑
i

χi(C1)χi(C1) = |G|,

the last equality from 11.1. �

11.3 G is abelian if and only if every simple CG-module is one-dimensional.

Proof. Assume G is abelian. Then every conjugacy class of G is a singleton, implying
G has |G| conjugacy classes. In view of 11.2, this implies ni = 1 for all i. The converse is
similar. �

Exercise 6

Prove that the number of irreducible characters of G of degree 1 equals the index in G of its commutator

subgroup G′.
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12 The Character Table

As in the last section, let C1, . . . , Ct be the conjugacy classes of G and let χ1, . . . , χt be
the irreducible characters. We always assume that C1 = {e} and that χ1 is the “trivial
character” given by χ1(a) = 1 for all a ∈ G. (Let V = C. The trivial homomorphism
ρ : G → GL(V ) makes V into a CG-module. This module is clearly simple since its
dimension is 1. The character afforded by V is the trivial character as defined above.)

Set γij = χi(Cj). The matrix Γ = [γij ] is called the character table of G.

Example. Assume G = Z4 = {0̄, 1̄, 2̄, 3̄}. By 10.3 and 11.3, there are four irreducible char-
acters, each of degree one. Now, a character of degree one is afforded by a representation
G → GL(C) and is therefore nothing more than a homomorphism G → C×. Moreover,
the image of this homomorphism is contained in the set of fourth roots of unity which
equals ⟨i⟩ = {1, i,−1,−i}, where i =

√
−1. Therefore, the four irreducible characters are

given by χk(j̄) = ikj , 0 ≤ k ≤ 3. The character table is as follows:

0̄ 1̄ 2̄ 3̄

χ0 1 1 1 1
χ1 1 i −1 −i
χ2 1 −1 1 −1
χ3 1 −i −1 i

More generally, if G = ⟨a⟩ is cyclic of order n, then G has n irreducible characters, each
of degree one, given by χi(a

j) = ωij (0 ≤ i, j < n), where ω = e2πi/n, and the character
table of G is [γij ] = [ωij ].

Remark. Of course, two isomorphic groups have the same character table (up to per-
mutations of rows and columns). However, the converse does not hold. Indeed, we will see
that the dihedral group D4 and the quaternion group Q8 have the same character table,
but D4 ̸∼= Q8 (Exercise 10).

Set ci = |Ci|. Here are the orthogonality relations from Sections 9 and 11 in the new
notation.
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12.1 (Orthogonality Relations)

I.
∑
k ckγikγjk = |G|δij,

II.
∑
k γkiγkj =

|G|
cj
δij.

Example. To get a feel for the orthogonality relations, the reader could check to see that
they hold for the character table of Z4 given in the example above. Here, we check the
case of general cyclic G discussed at the end of that example:

I. We have
∑
k ckγikγjk =

∑
k ω

ikω−jk =
∑
k(ω

i−j)k. Now, in general, if 1 ̸= α ∈ C,

then 1+α+α2+· · ·+αn−1 = 1−αn

1−α , which can be checked by multiplying both sides by 1−α.
Considering the cases i = j and i ̸= j separately, we get

∑n−1
k=0(ω

i−j)k = nδij = |G|δij .
II. Similarly,

∑
k γkiγkj =

∑
k ω

kiω−kj =
∑
k(ω

i−j)k = |G|
cj
δij .

Example. Assume G = S3, the symmetric group on three letters. First, in any symmetric
group Sn, two elements are conjugate if and only if they have the same “cycle type,” that is,
when written as products of disjoint cycles, they have the same number of cycles of length
2, of length 3, etc. Indeed, if σ, τ ∈ Sn and σ = (i1, . . . , is), then τστ

−1 = (τ(i1), . . . , τ(is))
[Hungerford, p. 51], so the statement follows.

Therefore, S3 has three conjugacy classes: C1 = {1}, C2 = {(12), (13), (23)}, C3 =
{(123), (132)}. If χ1, χ2, χ3 are the irreducible characters, then their degrees ni satisfy
n21 + n22 + n23 = |G| = 6 by 11.2. Therefore, the degrees are 1, 1 and 2 and we may assume
the notation is chosen so that n1 = 1, n2 = 1, and n3 = 2.

By convention, χ1 is the trivial character (χ1(a) = 1 for all a ∈ G). Next, χ2 is the
“sign character” (available for any symmetric group) given by

χ2(a) =

{
1, if a is even,

−1, if a is odd.

All we know about χ3 so far is that χ3(C1) = 2. We can use the orthogonality relations
12.1(II) to find the remaining values:

0 =
∑
k

γk1γk2 = 1− 1 + 2χ3(C2),

0 =
∑
k

γk1γk3 = 1 + 1 + 2χ3(C3),

whence, χ3(C2) = 0 and χ3(C3) = −1. Therefore, the character table is as follows:

C1 C2 C3

χ1 1 1 1
χ3 1 −1 1
χ3 2 0 −1
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Incidentally, it can be shown that the irreducible character values of any symmetric group
are always integers.

The statement of the orthogonality relations in 12.1 is probably the best suited for
computations, but it lacks symmetry and simplicity. For this reason, the following might
be of interest.

A complex n×n-matrix is unitary if its conjugate transpose equals its inverse. This is
the same as saying that the rows (respectively, columns) of the matrix form an orthonormal
set with respect to the standard inner product on Cn: (αk) · (βk) =

∑
k αkβ̄k.

For 1 ≤ i, j ≤ t let γ′ij = γij
√

cj
|G| and put Γ′ = [γ′ij ].

12.2 Γ′ is unitary.

Proof. Computing, we have

(row i) · (row j) =
∑
k

γ′ikγ
′
jk =

1

|G|
∑
k

ckγikγjk = δij ,

(col i) · (col j) =
∑
k

γ′kiγ
′
kj =

√
cicj

|G|
∑
k

γkiγkj = δij . �
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13 Direct Products

One of the most powerful tools in finite group theory is induction (usually on the order of
the group). So it makes sense to try to relate the representation theory of a group to that
of its subgroups. This is what we will be doing in the next several sections.

This relationship is easiest to describe if the chosen subgroup has a complement, that
is, if the group is the direct product of two subgroups.

Let G1 and G2 be finite groups and throughout this section assume G = G1 × G2 =
{(a1, a2) | ai ∈ Gi}. If Vi is a CGi-module, then V1⊗V2 becomes a CG-module by defining
(a1, a2)(v1 ⊗ v2) = a1v1 ⊗ a2v2 and extending linearly.

Remark. This is different from the tensor product of modules we considered earlier, for in
that case, V1 and V2 were both modules for the same algebraCH and V1⊗V2 became aCH-
module by defining h(v1⊗v2) = hv1⊗hv2. Here is the connection: ThisCH-module V1⊗V2
corresponds to a representation that is really the composition H → H×H → GL(V1⊗V2),
where the first map is the diagonal map h 7→ (h, h) and the second is the representation
afforded by the C(H ×H)-module as described above.

13.1 If χi is the character of Gi afforded by the CGi-module Vi (i = 1, 2), then the
map (χ1, χ2) : G → C given by (χ1, χ2)(a1, a2) = χ1(a1)χ2(a2) is the character of G
afforded by V1 ⊗ V2.

Proof. The proof is similar to that of 8.4(ii). �

13.2 If χ is a character of a finite group, then χ is irreducible if and only if ∥χ∥ = 1
(where ∥χ∥ := (χ, χ)1/2).

Proof. Let χ be a character of a finite group. Write χ =
∑
i niχi, where {χi} are the

distinct irreducible characters of the group and the ni are nonnegative integers. Then

∥χ∥2 =
∑
i,j

ninj(χi, χj) =
∑
i

n2i .

The result follows. �
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13.3 Irr(G) = Irr(G1)× Irr(G2).

Proof. Let (χ1, χ2) ∈ Irr(G1)× Irr(G2). Then

∥(χ1, χ2)∥2 =
1

|G|
∑

(a1,a2)

(χ1, χ2)(a1, a2)(χ1, χ2)(a1, a2)

=
1

|G|
∑

(a1,a2)

χ1(a1)χ2(a2)χ1(a1)χ2(a2)

=
1

|G1|
∑
a1

χ1(a1)χ1(a1) ·
1

|G2|
∑
a2

χ2(a2)χ2(a2)

= ∥χ1∥2∥χ2∥2

= 1,

so (χ1, χ2) ∈ Irr(G) by 13.1 and 13.2. Therefore, Irr(G1)× Irr(G2) ⊆ Irr(G).
To show equality, it is enough, according to 11.2, to show that the sum of the squares

of the degrees of the various (χ1, χ2) is |G|. We have,∑
(χ1,χ2)

[(χ1, χ2)(e1, e2)]
2 =

∑
χ1

(χ1(e1))
2 ·
∑
χ2

(χ2(e2))
2 = |G1||G2| = |G| �.
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14 A More General Tensor Product

For the definition of an induced module in the next section, we need a generalization of the
notion of tensor product of two vector spaces as introduced in Section 3. The construction
requires no special properties of the field, so we again work with an arbitrary field K.

Let S be an algebra with identity over K. Let N be a left S-module and let M be a
right S-module (so M is an abelian group equipped with a product (m, s) 7→ ms (m ∈M ,
s ∈ S) satisfying the right-sided analogs of the four module axioms on p. 2). We denote
this situation by SN , MS .

Recall that M and N are vector spaces over K. Let {mi} and {nj} be bases of M
and N , respectively. Then, as in Section 3, M ⊗N denotes the vector space over K with
basis {mi ⊗ nj}. Also as in that section, we put m ⊗ n =

∑
i,j αiβjmi ⊗ nj for arbitrary

m =
∑
i αimi ∈ M and n =

∑
j βjnj ∈ N . With this definition, it is easily checked that

m⊗n is linear in each factor (meaning (m+m′)⊗n = m⊗n+m′⊗n, (αm)⊗n = α(m⊗n),
and similarly for the second factor).

The vector space M ⊗ N can be regarded as a device for changing bilinear maps into
linear maps. Indeed, if V is a vector space over K and if f : M × N → V is a bilinear
map, then there is a unique linear map f̄ : M ⊗ N → V satisfying f̄(m ⊗ n) = f(m,n).
(To see this, put f̄(mi ⊗ nj) = f(mi, nj), extend this definition linearly to M ⊗ N , and
then show that the desired formula holds.)

Let W be the subspace of M ⊗N generated by all vectors of the form m⊗ sn−ms⊗n
with m ∈M , n ∈ N , and s ∈ S and define

M ⊗S N =M ⊗N/W.

We denote the coset m⊗ n+W by m⊗S n. Note that m⊗S n is linear in each factor and
that m⊗S sn = ms⊗S n for all m ∈M , n ∈ N , and s ∈ S.

14.1 Let MS, M
′
S, SN , SN

′ be S-modules as indicated. There are vector space iso-
morphisms as follows:

(1) (M ⊕M ′)⊗S N ∼= (M ⊗S N)⊕ (M ′ ⊗S N),
(2) M ⊗S (N ⊕N ′) ∼= (M ⊗S N)⊕ (M ⊗S N ′),
(3) S ⊗S N ∼= N ,
(4) M ⊗S S ∼=M .

Proof. (1) One checks that the function (M ⊕M ′) × N → (M ⊗S N) ⊕ (M ′ ⊗S N)
given by

((m,m′), n) 7−→ (m⊗S n,m′ ⊗S n)
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is bilinear. Therefore, according to the comments above, we get a unique linear map
φ : (M ⊕M ′)⊗N → (M ⊗S N)⊕ (M ′ ⊗S N) satisfying

φ((m,m′)⊗ n) = (m⊗S n,m′ ⊗S n)

(m ∈M , m′ ∈M ′, n ∈ N). In particular, this formula implies that for each s ∈ S

φ
(
(m,m′)s⊗ n− (m,m′)⊗ sn

)
= 0,

so φ induces a well-defined linear map φ̄ : (M ⊕M ′) ⊗S N → (M ⊗S N) ⊕ (M ′ ⊗S N)
satisfying

φ̄((m,m′)⊗S n) = (m⊗S n,m′ ⊗S n).

Similarly, we get a linear map ψ̄ : (M ⊗S N)⊕ (M ′ ⊗S N) → (M ⊕M ′)⊗S N satisfying

ψ̄((m⊗S n,m′ ⊗S n′)) = (m, 0)⊗S n+ (0,m′)⊗S n′.

One easily checks that ψ̄φ̄ = 1 and φ̄ψ̄ = 1. In particular, φ̄ is an isomorphism. The proof
of (2) is similar.

(3) Proceed as above to get linear maps φ̄ : S⊗SN → N and ψ̄ : N → S⊗SN satisfying
φ̄(s⊗Sn) = sn and ψ̄(n) = 1⊗Sn, and then check that both compositions give the identity
map. The proof of (4) is similar. �

Let R and S be algebras with identity over K. An (R,S)-bimodule is an abelian group
M that is both a left R-module and a right S-module such that (rm)s = r(ms) for all
r ∈ R, s ∈ S, m ∈M . To indicate such a bimodule, we write RMS .

Let RMS and SN be modules as indicated. The vector space M ⊗ N becomes a left
R-module if we define r(m⊗ n) = (rm)⊗ n. As before, let W be the subspace of M ⊗N
generated by all vectors of the form m ⊗ sn −ms ⊗ n with m ∈ M , n ∈ N , s ∈ S. Then
W is an R-submodule of M ⊗N since, for r ∈ R, we have

r(m⊗ sn−ms⊗ n) = rm⊗ sn− r(ms)⊗ n = rm⊗ sn− (rm)s⊗ n ∈W.

Therefore,M⊗SN =M⊗N/W becomes an R-module by defining r(m⊗Sn) = (rm)⊗Sn.

14.2 Let LR, RMS, SN be modules as indicated. Then L ⊗R (M ⊗S N) ∼= (L ⊗R
M)⊗S N as vector spaces.

Proof. In general, if U , V , and W are vector spaces with W < V , then U ⊗ (V/W ) ∼=
U ⊗ V/U ⊗W by u⊗ v ↔ u⊗ v, where bars represent cosets.

There is a linear map L ⊗ (M ⊗ N) → (L ⊗R M) ⊗S N that sends l ⊗ (m ⊗ n) to
(l ⊗R m) ⊗S n. Indeed, if for fixed l ∈ L we define fl : M ⊗ N → (L ⊗R M) ⊗S N by
fl(m ⊗ n) = (l ⊗R m) ⊗S n, then we get a linear map L ⊗ (M ⊗ N) → (L ⊗R M) ⊗S N
that sends l ⊗ x to fl(x) (x ∈ M ⊗N). Using the previous paragraph and then this map
(together with the Fundamental Homomorphism Theorem), we get linear maps

L⊗ (M ⊗S N) = L⊗ (M ⊗N/W ) ∼= L⊗ (M ⊗N)/L⊗W → (L⊗RM)⊗S N
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(W as before the statement of this theorem) that sends l⊗ (m⊗S n) to (l⊗Rm)⊗S n. In
turn, this composition induces a linear map

L⊗R (M ⊗S N) → (L⊗RM)⊗S N

that sends l ⊗R (m⊗S n) to (l ⊗R m)⊗S n.
We get a similar map in the other direction and each composition gives the identity

map. �

Exercise 7

Let the notation be as at the first of this section. A linear map f : M ⊗N → V (V a vector space over

K) is middle linear if f(m ⊗ sn) = f(ms ⊗ n) for all m ∈ M , n ∈ N , s ∈ S. Let C be the category

defined as follows: The objects are pairs (V, f) where V is a vector space over K and f : M ⊗N → V

is a middle linear map; a morphism (V, f) → (V ′, f ′) is a linear map φ : V → V ′ such that φ ◦ f = f ′.

Let π : M ⊗ N → M ⊗S N be the canonical epimorphism. Prove that (M ⊗S N, π) is a universal

(=initial) object of C [Hungerford, p. 57].
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15 Induced Modules

LetH be a subgroup of G. ThenCH is a subalgebra ofCG. Moreover, CG is a (CG,CH)-
bimodule. Therefore, if N is a CH-module, we get a CG-module

NG := CG⊗CH N

called an induced module. In this section, we will study the structure of this module
and relate the representation and character it affords to those afforded by N .

Fix a set {a1, . . . , ar} of representatives of the left cosets of H in G, so that G = ∪̇iaiH.
Below, we write a⊗ n for the tensor a⊗CH n ∈ NG.

15.1 Let the notation be as above.

(1) dimCN
G = [G : H] dimCN ,

(2) NG has basis {ai ⊗ nk}, where {nk} is a basis for N .

Proof. (1) First note that CG =
∑̇
iaiCH, since G = ∪̇iaiH and the subspace of

CG generated by aiH is aiCH. Now each aiCH is isomorphic to CH as right CH-
module, so we have CG ∼=

⊕r
i=1 CH as right CH-modules. Using 14.1, we get vector

space isomorphisms NG = CG ⊗CH N ∼=
⊕

i(CH ⊗CH N) ∼=
⊕

iN . Hence dimCN
G =

r dimCN , as desired.
(2) By part (1), it is enough to show that this set spans NG. Let a ∈ G. Then a = aih

for some i and some h ∈ H. Hence, for any n ∈ N , we get

a⊗ n = ai ⊗ hn = ai ⊗ (
∑
k

αknk) =
∑
k

αk(ai ⊗ nk),

where hn =
∑
k αknk. Since NG is spanned by elements of the form a ⊗ n, the proof is

complete. �

15.2 Let the notation be as above. Let R be the matrix representation of H af-
forded by N relative to the basis {n1, . . . , ns}. For each a ∈ G and 1 ≤ i, j ≤ r, set
Rij(a) = R(a−1

i aaj), where we define R(g) := 0 if g /∈ H. Then RG := [Rij ] is the matrix
representation of G afforded by the induced module NG relative to the basis {ai ⊗ nk}
(ordered lexicographically).

Proof. Write R = [αkl] so that hnl =
∑
k αkl(h)nk for each h ∈ H. Now let a ∈ G

and fix 1 ≤ j ≤ r. Then aaj = aih for some uniquely determined 1 ≤ i ≤ r and h ∈ H.
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Note that h = a−1
i aaj . Hence, for any 1 ≤ l ≤ s we have,

a(aj ⊗ nl) = aih⊗ nl = ai ⊗ hnl = ai ⊗ (
∑
k

αkl(h)nk)

=
∑
k

αkl(a
−1
i aaj)ai ⊗ nk.

Therefore, we have the following picture:

Note that if i′ ̸= i, then a−1
i′ aaj /∈ H so that Ri′j(a) = 0. This proves the theorem. �

If theCH-module N affords the character χ, then we write χG for the character afforded
by the induced module NG and call it an induced character.

15.3 With the notation as above, we have

χG(a) =
1

|H|
∑
g∈G

χ(g−1ag),

where χ(b) := 0 if b /∈ H.

Proof. Using 15.2, we get

χG(a) = trRG(a) =
∑
i

trRii(a) =
∑
i

trR(a−1
i aai) =

∑
i

χ(a−1
i aai).

Now, if h ∈ H, then 8.5(4) says χ(a−1
i aai) = χ(h−1a−1

i aaih), so we have

χG(a) =
1

|H|
∑
h∈H

∑
i

χ
(
(aih)

−1a(aih)
)
=

1

|H|
∑
g∈G

χ(g−1ag). �
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15.4 (Additivity of Induction) If N and N ′ are CH-modules, then (N⊕N ′)G ∼=
NG ⊕N ′G. In particular, if χ and χ′ are characters of H, then (χ+ χ′)G = χG + χ′G.

Proof. Using 14.1(2) we get a vector space isomorphism

(N ⊕N ′)G = CG⊗CH (N ⊕N ′) ∼= (CG⊗CH N)⊕ (CG⊗CH N ′) = NG ⊕N ′G.

It is easy to check that this isomorphism is actually a CG-isomorphism. The statement
about characters now follows from 8.4(1) �

15.5 (Transitivity of Induction) If H ≤ J ≤ G and N is a CH-module, then
(NJ)G ∼= NG. In particular, if χ is a character of H, then (χJ)G = χG.

Proof. We have by definition

(NJ )G = CG⊗CJ (CJ ⊗CH N).

By 14.2, the expression on the right is isomorphic as vector space to (CG⊗CJ CJ)⊗CH

N , and the isomorphism in the proof of that result is easily seen to be a (left) CG-
isomorphism. In turn, the vector space isomorphism CG ⊗CJ CJ ∼= CG of 14.1(4) is
clearly an isomorphism of (CG,CH)-bimodules. Therefore,

(NJ)G ∼= (CG⊗CJ CJ)⊗CH N ∼= CG⊗CH N = NG. �
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16 Frobenius Reciprocity

Let H be a subgroup of G, let M be a simple CG-module and let N be a simple CH-
module. The module M viewed as a CH-module (denoted MH) might not be simple, but
Maschke’s Theorem (7.1) says it is at least isomorphic to a direct sum of simple modules.
Similarly, NG is isomorphic to a direct sum of simple modules. “Frobenius Reciprocity”
states that the number of times N occurs as a direct summand of MH is the same as
the number of times M occurs as a direct summand of NG. This can be proved by a
straightforward character computation (see remark after 16.5), but we will give a more
conceptual module-theoretic proof.

For the time being, let K be any field and let R be a K-algebra with identity. For (left)
R-modules L and M , denote by HomR(L,M) the set of all R-homomorphisms from L to
M . This set is a vector space over K with operations coming from those on M .

16.1 Let L, L′, M , and M ′ be R-modules. There are vector space isomorphisms as
follows:

(1) HomR(L⊕ L′,M) ∼= HomR(L,M)⊕HomR(L
′,M),

(2) HomR(L,M ⊕M ′) ∼= HomR(L,M)⊕HomR(L,M
′),

(3) HomR(R,M) ∼=M .

Warning: In general, HomR(M,R) ̸∼=M .

Proof. (1) The desired isomorphism is obtained by sending f to the pair (f ◦ιL, f ◦ιL′)
(= (f |L, f |L′)), where ιL (respectively, ιL′) is the usual injection.

(2) The desired isomorphism is obtained by sending f to the pair (πM ◦ f, πM ′ ◦ f),
where πM (respectively, πM ′) is the usual projection.

(3) Here, define φ : HomR(R,M) →M by φ(f) = f(1). Clearly, φ is a monomorphism.
Form ∈M , define fm : R→M by fm(r) = rm. Then fm ∈ HomR(R,M) and φ(fm) = m,
so φ is surjective. �

Now let S be another K-algebra with identity and suppose we have modules RLS and

RM as indicated. Then Hom(L,M) (= space of K-linear maps from L to M) becomes
an S-module if we define (sf)(l) = f(ls) (f ∈ Hom(L,M), s ∈ S, l ∈ L). Moreover,
HomR(L,M) is an S-submodule of Hom(L,M), for if f ∈ HomR(L,M), then

(sf)(rl) = f
(
(rl)s

)
= f

(
r(ls)

)
= r
(
f(ls)

)
= r
(
(sf)(l)

)
.

Note the similarities between these homomorphism modules and the tensor products
discussed earlier. Of course, there are the results 14.1 and 16.1. But also, HomR(L,M) is
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an S-submodule of Hom(L,M) while, given modules RMS and SN as indicated, M ⊗S N
is a quotient of the R-module M ⊗N . Since submodules and quotients are dual concepts,
this suggests the same of homomorphism modules and tensor products. The following
theorem expresses an explicit relationship between these modules.

16.2 (Adjoint Associativity) Let RLS, RM , and SN be modules as indicated.
There is a vector space isomorphism

HomR(L⊗S N,M) ∼= HomS(N,HomR(L,M)).

Proof. See Exercise 8 below. �

We now return to a discussion of modules for group algebras over the field of complex
numbers. Given CG-modules M and M ′, we put

ιCG(M,M ′) := dimC HomCG(M,M ′)

and call this number the intertwining number of M and M ′. According to 16.1, this
number is “additive” in each component, meaning

ιCG(M1 ⊕M2,M
′) = ιCG(M1,M

′) + ιCG(M2,M
′),

and similarly in the second component.

16.3 Let the notation be as above. If M and M ′ afford the characters χ and χ′,
respectively, then ιCG(M,M ′) = (χ, χ′). In particular, if M ′ is simple, then ιCG(M,M ′)
is the multiplicity of M ′ as a direct summand of M , and similarly, if M is simple, then
ιCG(M,M ′) is the multiplicity of M as a direct summand of M ′.

Proof. By Maschke’s Theorem (7.1) we can writeM ∼=
⊕

imiMi andM
′ ∼=

⊕
im

′
iMi

with the Mi pairwise nonisomorphic simple modules and the mi and m′
i nonnegative

integers. According to Schur’s Lemma (6.2), we have

HomCG(Mi,Mj) ∼=
{

C, i = j,

0, i ̸= j,

so that ιCG(Mi,Mj) = δij . Using the additivity in each component of the intertwining
number, we obtain

ιCG(M,M ′) =
∑
i,j

mim
′
jιCG(Mi,Mj) =

∑
i

mim
′
i.

On the other hand, if χ and χ′ are the characters afforded by M and M ′, respectively,
and χi is the (irreducible) character afforded by Mi, then 8.4 gives χ =

∑
imiχi and

χ′ =
∑
im

′
iχi, so that

(χ, χ′) =
∑
i,j

mim
′
j(χi, χj) =

∑
i

mim
′
i,

where we have used 9.7. This gives the first statement. The second now follows from
9.5. �
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16.4 (Frobenius Reciprocity for Modules) Let H be a subgroup of G, let M
be a simple CG-module and let N be a simple CH-module. The multiplicity of N as a
direct summand of MH equals the multiplicity of M as a direct summand of NG.

Proof. It is easy to see that the isomorphism HomCG(CG,M) ∼=M of 16.1 is actually
a CH-isomorphism (viewing CG as a (CG,CH)-bimodule and hence HomCG(CG,M)
as a CH-module). Therefore, 16.2 gives HomCG(N

G,M) ∼= HomCH(N,M), so that
ιCG(N

G,M) = ιCH(N,MH). The result now follows from 16.3. �

Given a class function χ on G and a subgroup H of G, we denote by χH the restriction
of χ to H (manifestly a class function on H). If the CG-module M affords the character
χ, then the CH-module MH affords the character χH .

16.5 (Frobenius Reciprocity for Characters) Let H be a subgroup of G, let
χ be a character of G and let λ be a character of H. Then (λG, χ) = (λ, χH).

Proof. First note that restriction and induction of characters are both additive, that

is, (χ+χ′)H = χH +χ′
H (clearly) and (λ+λ′)G = λG+λ′

G
(by 15.3, for instance). Hence,

we may assume that χ and λ are both irreducible. The result now follows from 16.4 and
9.5. �

Remark. Let H be a subgroup of G. For an arbitrary class function λ on H, we define
a class function λG on G be means of

λG(a) =
1

|H|
∑
g∈G

λ0(g−1ag),

where

λ0(b) =

{
λ(b), b ∈ H,

0, b /∈ H.

By 15.3, this notation agrees with the earlier notation in the case λ is a character.
Using 10.2 and 16.5, it is easy to show that the formula (λG, χ) = (λ, χH) holds for

arbitrary class functions χ ∈ Cl(G), λ ∈ Cl(H). We also give a proof of this using the
definitions alone. Computing, we have

(λG, χ) =
1

|G|
∑
a∈G

λG(a)χ(a)

=
1

|G|
∑
a∈G

1

|H|
∑
g∈G

λ0(g−1ag)χ(a)

=
1

|H|
1

|G|
∑
g∈G

∑
a∈G

λ0(g−1ag)χ(g−1ag)

=
1

|H|
1

|G|
∑
g∈G

∑
b∈G

λ0(b)χ(b)
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=
1

|H|
∑
b∈H

λ(b)χ(b)

= (λ, χH),

where we have used that λ0(G\H) = 0 for the penultimate equality.

Exercise 8

Prove 16.2. (Hint: Define maps in both directions and show that the compositions are the respective

identity maps. Do not bother to check linearity of the various maps involved. Note, however, that you

need to check that your maps are well-defined in the sense that they map into the indicated spaces.

Also, since L⊗S N is a quotient space, you may need to check that your definitions are independent of

the chosen coset representative.)
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17 Clifford Theory

Clifford theory relates the representations of a group to those of a normal subgroup. The
main theorem (17.3), due to Clifford, says that the restriction of a simple module to
a normal subgroup is isomorphic to the direct sum of a full conjugacy class of simple
modules (or possibly a direct sum of several copies of such).

We need some preliminaries. The first result gives a way to detect induced modules.

17.1 Let H be a subgroup of G, let M be a CG-module, and let L be a submodule of

MH . If M =
∑̇
a∈AaL, where A is a set of representatives for the left cosets of H in G,

then M ∼= LG.

Proof. Assume the hypotheses. Define φ : CG ⊗ L → M by s ⊗ l 7→ sl (s ∈ CG,
l ∈ L). This is a CG-homomorphism; it is clearly surjective by our assumption on M .
Note that

φ(s⊗ hl) = s(hl) = (sh)l = φ(sh⊗ l)

(s ∈ CG, h ∈ H, l ∈ L), so we get an inducedCG-epimorphism φ̄ : LG = CG⊗CHL→M .
By 15.1, dimC L

G = [G : H] dimC L. This is also the dimension of M by our assumption,
so φ̄ is an isomorphism. �

Let M be a CG-module and let L be a simple submodule of M . The submodule

L̃ :=
∑
L′≤M
L′∼=L

L′ ≤M

is called the homogeneous component of M containing L.

17.2 Let the notation be as above.

(1) L̃ ∼=
⊕t

i=1 L for some positive integer t.

(2) If L′ is another simple submodule of M , then L̃′ = L̃ if and only if L′ ∼= L.

(3) M =
∑̇
N∈NN , where N is the set of homogeneous components of M .

Proof. (1) Let {L1, . . . , Lt} be a collection of submodules of M with Li ∼= L and
Li ∩

∑
j ̸=i Lj = {0} for each i. Since dimC

∑
i Li = t dimC L, it is clear that there is

a maximal such set, which we assume without loss of generality to be {L1, . . . , Lt}. Let

Lt+1 be a submodule of M with Lt+1
∼= L. Then Lt+1 ⊆

∑t
i=1 Li. Indeed, if this were

not the case, then, since Lt+1 is simple, we would have Lt+1 ∩
(∑t

i=1 Li

)
= {0} and then
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Li ∩
∑
j ̸=i Lj = {0} for all 1 ≤ i ≤ t+1, contradicting maximality of the set {L1, . . . , Lt}.

It now follows that L̃ =
∑̇
iLi

∼=
⊕t

i=1 Li.

(2) Let L′ be another simple submodule of M and assume L̃′ = L̃. By part (1), we have⊕t′

i=1 L
′ ∼=

⊕t
i=1 L for some positive integers t and t′. Since the summands in a direct sum

of simple modules are the composition factors of the sum, the uniqueness of composition
factors guaranteed by the Jordan-Hölder Theorem implies L′ ∼= L. The converse is clear.

(3) By Maschke’s Theorem, M is the internal direct sum of a collection of its simple
submodules, and, since each simple submodule is contained in its own homogeneous com-
ponent, we haveM =

∑
N∈N N . We just need to show that this sum is direct. Fix N ∈ N .

We have N = L̃ for some simple submodule L ofM . By part (1), every composition factor,
and hence every simple submodule, of N is isomorphic to L. On the other hand, if N ′ ∈ N
and N ′ ̸= N , then by parts (1) and (2), no composition factor of N ′ is isomorphic to L.
Since the sum

∑
N ′∈N
N ′ ̸=N

N ′ is a homomorphic image of the direct sum
⊕

N ′∈N
N ′ ̸=N

N ′, it follows

that it has no composition factor, and hence no submodule, isomorphic to L. Therefore,

N ∩
∑
N ′∈N
N ′ ̸=N

N ′ = {0},

and the result follows. �

Let H be a subgroup of G and let a ∈ G. For h ∈ H put ah = aha−1 and define
aH = {ah |h ∈ H} = aHa−1. Let L be a CH-module. The conjugate of L by a is the
C(aH)-module aL that has as underlying vector space L and as action ah · l = hl (h ∈ H,
l ∈ L). It is easy to see that aL is simple if and only if L is simple. Note that if H ▹ G,
then aL is a CH-module.

17.3 (Clifford’s Theorem for Modules) Let M be a simple CG-module, let

H ▹G, and let L be a simple submodule of MH . Set H̃ = {a ∈ G | aL̃ = L̃} ≤ G and let A

be a set of representatives for the left cosets of H̃ in G.

(1) {aL}a∈A is a complete set of pairwise nonisomorphic conjugates of L.
(2) MH

∼= t
(⊕

a∈A
aL
)
, where t is the multiplicity of L as a summand of MH .

(3) L̃ is a CH̃-submodule of MH̃ . We have L̃H ∼=
⊕t

i=1 L and L̃G ∼=M .

Proof. Step 1: For each a ∈ G, we have aL ∼= aL as CH-modules. First note that
HaL = aa−1HaL = aL, so aL is indeed a CH-module. Define φ : aL→ aL by φ(l) = al.
This is clearly a vector space isomorphism. For h ∈ H, we have

φ(h · l) = φ(a(a−1ha) · l) = φ(a−1hal) = aa−1hal = hal = hφ(l),

so φ is a CH-isomorphism.
Step 2: We have M =

∑
a∈G aL. For each b ∈ G, we have b

∑
a aL =

∑
a baL =

∑
a aL,

so
∑
a∈G aL is a CG-submodule of M . It contains L = eL (assuming that e ∈ A, which

we can do without loss of generality) and is hence nonzero. Since M is simple, the result
follows.
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Step 3: For each a ∈ G, we have aL̃ = ãL. Let a ∈ G. By Step 1, aL is isomorphic to
aL and is hence simple. Thus ãL is defined. Now

aL̃ = a
∑

L′≤MH

L′∼=L

L′ =
∑

L′≤MH

L′∼=L

aL′ ⊆
∑

L′≤MH

L′∼=aL

L′ = ãL,

so aL̃ ⊆ ãL. This, in turn, implies

ãL = aa−1ãL ⊆ aã−1aL = aL̃.

Step 4: ãL = b̃L if and only if aH̃ = bH̃. Indeed,

ãL = b̃L ⇐⇒ aL̃ = bL̃ ⇐⇒ b−1aL̃ = L̃ ⇐⇒ b−1a ∈ H̃ ⇐⇒ aH̃ = bH̃,

the first equivalence from Step 3.
We are now in a position to prove the theorem. Using Step 1, 17.2(2), and Step 4, we

find that aL ∼= bL if and only if aH̃ = bH̃ (a, b ∈ G). This proves (1).
Next, we prove (2). We have by Step 2 that

M =
∑
a∈G

aL ⊆
∑
a∈G

ãL ⊆M,

which forces M =
∑
a∈G ãL. In particular {ãL | a ∈ G} is the complete set of components

of MH (see 17.2(3)). By Step 4, the modules ãL (a ∈ A) are the distinct components of

MH , so by 17.2(3), we have MH =
∑̇
a∈AãL.

Let a ∈ A. According to 17.2(1), ãL ∼=
⊕t(a)

i=1 aL for some positive integer t(a). Now,
the map x 7→ ax defines a vector space automorphism of M . Hence (assuming without
loss of generality that e ∈ A),

t(a) dimC L = t(a) dimC aL = dimC ãL = dimC aL̃ = dimC L̃ = t(e) dimC L.

We conclude that t(a) = t(e) =: t for all a ∈ A. Therefore,

MH =
∑̇

a∈A
ãL ∼=

⊕
a∈A

t(a)⊕
i=1

aL ∼=
t⊕
i=1

⊕
a∈A

aL = t

(⊕
a∈A

aL

)
.

Moreover, by part (1), t is precisely the multiplicity of L as a direct summand of MH .
This completes the proof of (2).

It remains to prove (3). First, by the definition of H̃, it is clear that L̃ is a CH̃-

submodule of MH̃ . By 17.2(1) and our definition of t, we have L̃H ∼=
⊕t

i=1 L. Finally,
from the proof of part (2) together with Step 3 we get

M =
∑̇

a∈A
ãL =

∑̇
a∈A

aL̃.

Therefore, 17.1 implies M ∼= L̃G. �

Let H be an arbitrary subgroup of G, let L be a CH-module and let a ∈ G. If L affords
the character λ, then the C(aH)-module aL affords the conjugate character aλ of aH
defined by aλ(ah) = λ(h).

We state the most frequently used portion of 17.3 in terms of characters.
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17.4 (Clifford’s Theorem for Characters) Let H ▹ G, let χ ∈ Irr(G), let
λ ∈ Irr(H) and assume t := (χH , λ) ̸= 0. We have χH = t

∑
a∈A

aλ, where {aλ}a∈A is a
complete set of distinct conjugates of λ.

Exercise 9

A CG-module is faithful if the representation it affords has trivial kernel (i.e., if the representation is

injective). Prove that if there exists a simple faithful CG-module, then the center of G is cyclic.
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18 Mackey’s Subgroup Theorem

Let X and Y be two subgroups of G. Given a CX-module L, we can induce up to the
group G and then restrict down to the subgroup Y to obtain the CY -module (LG)Y . The
main result of this section, due to Mackey, expresses this new module in terms of modules
obtained by taking conjugates of L, restricting them to certain subgroups of Y , and then
inducing the resulting modules up to Y .

The constructions depend on the following notion from group theory. Given a ∈ G, the
set

Y aX = {yax | y ∈ Y, x ∈ X}
is called a (Y,X)-double coset. The main facts about double cosets are summarized in
the next result.

18.1 Let X and Y be two subgroups of G.

(1) The set of (Y,X)-double cosets partitions G.
(2) For each a ∈ G, the set Y aX is a union of left cosets of X and is also a union of

right cosets of Y .
(3) Let a ∈ G. If B is a set of representatives for the left cosets of aX ∩ Y in Y , then

Ba is a set of representatives for the left cosets of X in Y aX.

Proof. (1) Let Y aX and Y a′X be two (Y,X)-double cosets and suppose their inter-
section is nonempty. Then the intersection contains an element b, which can be written
b = yax and also b = y′a′x′ for some y, y′ ∈ Y and x, x′ ∈ X. Then

Y aX = Y yaxX = Y y′a′x′X = Y a′X.

We conclude that the double cosets are pairwise disjoint. Finally, if a ∈ G, then a = eae ∈
Y aX, so G is the union of the (Y,X)-double cosets.

(2) For each a ∈ G, we have Y aX = ∪y∈Y yaX and Y aX = ∪x∈XY ax.
(3) Let B be a set of representatives for the left cosets of aX ∩ Y in Y . We first show

that Y aX = BaX. Let y ∈ Y . Now y lies in some left coset of aX ∩ Y , so we have
b−1y ∈ aX ∩ Y for some b ∈ B. In particular, b−1y = axa−1 for some x ∈ X. Then
yaX = yax−1X = baX. Thus Y aX = BaX, as desired. Next, suppose baX = b′aX for
some b, b′ ∈ B. Then

b′(aX ∩ Y ) = b′aXa−1 ∩ Y = baXa−1 ∩ Y = b(aX ∩ Y ),

so b′ = b (implying b′a = ba). This completes the proof. �
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18.2 (Mackey’s Subgroup Theorem) Let X and Y be subgroups of G. If L is a
CX-module, then

(LG)Y ∼=
⊕
a∈A

((aL)aX∩Y )
Y
,

where A is a set of representatives for the (Y,X)-double cosets in G.

Proof. Let L be a CX-module. Fix a (Y,X)-double coset D and let W (D) be the
subspace of LG = CG⊗CX L given by (writing ⊗ for ⊗CX)

W (D) =
∑
c∈C

c⊗ L,

where C is a set of representatives for the left cosets of X in D (see 18.1(2)). This definition
does not depend on the choice for C. Indeed, let C and C ′ be two sets of representatives
for the left cosets of X in D. If c′ ∈ C ′, then c′ = cx for some c ∈ C and x ∈ X, implying

c′ ⊗ L = cx⊗ L = c⊗ xL = c⊗ L.

This gives
∑
c′∈C′ c′ ⊗ L ⊆

∑
c∈C c⊗ L, and symmetry yields equality as desired.

Now W (D) is a CY -submodule of (LG)Y . Indeed, if y ∈ Y and C is as above, then for
any c ∈ C, we have yc = c′x for some c′ ∈ C and x ∈ X, so that

y(c⊗ L) = yc⊗ L = c′x⊗ L = c′ ⊗ xL = c′ ⊗ L,

and the claim follows.
Write D = Y aX and let B be a set of representatives for the left cosets of aX ∩ Y in

Y . By 18.1(3), C := Ba is a set of representatives for the left cosets of X in Y aX, so

W (D) =
∑̇

b∈B
ba⊗ L =

∑̇
b∈B

b(a⊗ L),

where we have used 15.1(2) to see that the sum is direct. Now the map φ : aL→ a⊗L given
by φ(l) = a⊗ l is a C(aX)-isomorphism. Indeed, it is clearly a vector space isomorphism,
and we have

φ(ax · l) = φ(xl) = a⊗ xl = ax⊗ l = axa⊗ l = axφ(l)

(x ∈ X, l ∈ aL). In particular, a⊗L ∼= aL as C(aX ∩ Y )-modules. Therefore, by 17.1, we

have W (D) ∼= ((aL)aX∩Y )
Y

as CY -modules.

Finally, 15.1(2) and 18.1(1) imply LG =
∑̇
DW (D), where the sum is over all (Y,X)-

double cosets D in G, whence

(LG)Y ∼=
⊕
a∈A

((aL)aX∩Y )
Y
,

where A is a set of representatives for the (Y,X)-double cosets in G. This completes the
proof. �

We record a useful special case of 18.2.
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18.3 If H ▹ G and L is a CH-module, then

(LG)H ∼=
⊕
a∈A

aL,

where A is a set of representatives for the (left) cosets of H in G.

Proof. Assume the hypotheses and let A be as stated. For each a ∈ A, we have
HaH = aHH = aH, so that A is also a set of representatives for the (H,H)-double cosets
in G. Also, for each a ∈ A, we have

((aL)aH∩H)
H

= ((aL)H)
H ∼= aL.

The result now follows from 18.2. �

Remark. One can also prove 18.3 quite easily without using Mackey’s Subgroup The-
orem. With the notation as in the statement, it is easy to see that for each a ∈ A, the
subspace a ⊗ L of LG is actually a CH-submodule. Moreover, by essentially the same
argument as that in the proof of 17.3, Step 1, we have a⊗L ∼= aL (a ∈ A) as CH-modules.
Therefore,

(LG)H =
∑̇

a∈A
a⊗ L ∼=

⊕
a∈A

aL,

as desired.
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19 Quotients

In the last few sections, we have been studying the relationship between the representations
of a group and those of its subgroups. We see in the next theorem that the relationship
between the representations of a group and those of a quotient of the group is much easier
to describe.

Let H be a normal subgroup of G. Put Ḡ = G/H and let π : G → Ḡ denote the
canonical epimorphism (π(a) = aH).

19.1 The assignment ρ 7→ ρ ◦ π defines a bijection between the set of representations
of Ḡ and the set of those representations of G with kernel containing H. Moreover, this
map sends each irreducible representation to an irreducible representation.

Proof. If ρ : Ḡ→ GL(V ) is a representation, then ρ ◦ π : G→ GL(V ) is a representa-
tion with kernel containing H, so the map is well-defined.

Let φ : G→ GL(V ) be a representation with kernel containing H. By the main lemma
to the First Isomorphism Theorem (see [Hungerford, Theorem 5.6, p. 43]), there exists a
unique homomorphism φ̄ : Ḡ → GL(V ) such that φ̄ ◦ π = φ, that is, such that φ̄ 7→ φ.
This shows that the map is bijective.

Finally, if ρ : Ḡ→ GL(V ) is a representation and W ≤ V satisfies
(
(ρ ◦ π)(G)

)
W ⊆W ,

then
(
ρ(Ḡ)

)
W ⊆W . Therefore, the last statement follows. �
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20 Example: The Dihedral Group

In this section, we use some of the theory we have developed to compute the character
table of the dihedral group.

Fix a positive integer m and let G = Dm, the dihedral group of degree m. Thus G is
the group of symmetries of a regular m-gon. Since there are m orientations of the m-gon
without flipping it over, as well as m orientations after flipping it over, it is clear that G
has order 2m.

Position the m-gon in such a way that one of the vertices is at the top. Label the
vertices 1, 2, . . . ,m starting with 1 at the top and proceeding clockwise. Any orientation
of the m-gon gives rise to a permutation of the vertices, which can be viewed, relative to
the labeling system just described, as an element of the symmetric group Sm. In this way,
we consider G to be a subgroup of Sm. The clockwise rotation of the m-gon through an
angle of 2π/m radians is given by

a =

(
1 2 · · · m− 1 m
2 3 · · · m 1

)
.

The flip of the m-gon about the vertical line through the top vertex is given by

b =

(
1 2 3 · · · m− 1 m
1 m m− 1 · · · 3 2

)
.

Since any symmetry of the m-gon produced by rotation is a power of a, it follows that
G = ⟨a, b⟩. It is easy to check that am = 1 = b2, and that aib = ba−i for all i. In particular,
G = {ai, bai | 0 ≤ i < m}.

Set H = ⟨a⟩. Then H is a cyclic group of order m. According to the first example of
Section 12, H has precisely m irreducible characters λj (0 ≤ j < m) given by λj(a

i) = ωij ,

where ω = e2πi/m.
Fix 0 ≤ j < m. Now H is a normal subgroup of G since, for instance, its index in G is

two. Therefore, 18.3 applies to give

(λj
G)H = λj +

bλj ,

where bλj denotes the conjugate by b of the character λj as defined in Section 17. For each
h ∈ H, we have

bλj(h) =
bλj
(
b(b−1hb)

)
= λj(b

−1hb) = λj(h
−1) = λj(h),
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whence bλj = λj . Then, by Frobenius Reciprocity (16.5), we get

(λj
G, λj

G) = (λj , (λj
G)H) = (λj , λj + λj) = 1 + (λj , λj).

Hence, λj
G is irreducible if and only if λj ̸= λj (see 13.2).

The even m case. By the previous paragraph, λj
G is irreducible if 1 ≤ j < m/2. This

gives m/2−1 distinct irreducible characters of G, each of degree two. Since the sum of the
squares of the degrees of the irreducible characters equals the order of the group (11.2),
we see that we have not yet found all of the irreducible characters.

Set K = ⟨a2⟩. Then K is a normal subgroup of G. Indeed, it is clear that a−1Ka = K
and since aib = ba−i, we have b−1Kb = K. Since a and b generate G, the claim follows.
The group Ḡ := G/K has order four and it contains two elements of order two, namely
ā and b̄. Hence we obtain an isomorphism Ḡ → Z2 ⊕ Z2 by mapping ā 7→ (1, 0) and
b̄ 7→ (0, 1). Denoting by σ the nontrivial character of Z2 (i.e., σ(0) = 1, σ(1) = −1), we
have from 13.3 the following character table of Z2 ⊕ Z2:

(0, 0) (1, 0) (0, 1) (1, 1)

1 1 1 1 1
(σ, 1) 1 −1 1 −1
(1, σ) 1 1 −1 −1
(σ, σ) 1 −1 −1 1

According to 19.1, the compositions of these characters with the canonical map G→ Ḡ ∼=
Z2 ⊕Z2, yield four characters of G, each of degree one, which we denote by ψi, 0 ≤ i ≤ 3,
respectively. Checking the sum of the squares of the degrees we see that these characters
complete the list. There are thus m/2 + 3 irreducible characters of G and the character
table is as follows (1 ≤ j < m/2):

ai bai

ψ0 = 1 1 1
ψ1 (−1)i (−1)i

ψ2 1 −1
ψ3 (−1)i (−1)i+1

λj
G 2 cos 2πij

m 0

To get the last line, note that

λj
G(ai) = λj(a

i) + λj(ai) = ωij + ω−ij = 2Re(ωij) = 2 cos(2πij/m),

and that for x ∈ G\H,

λj
G(x) =

1

|H|
∑
g∈G

λ0j (g
−1xg) = 0
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by 15.3, where we have used the definition of λ0j and the fact that g−1xg /∈ H for each
g ∈ G since H is normal.

Finally, one checks that G has m/2 + 3 conjugacy classes, namely,

{1},
{ai, am−i} (1 ≤ i < m/2),

{am/2},
{ba2k | 0 ≤ k < m/2},
{ba2k+1 | 0 ≤ k < m/2}.

Therefore, the number of irreducible characters equals the number of conjugacy classes as
expected (see 10.3).

The odd m case. In this case, λj
G, 1 ≤ j ≤ (m−1)/2, are irreducible and distinct. This

yields (m− 1)/2 irreducible characters of degree two. Also, G/H is isomorphic to Z2, so,
arguing as above, we obtain two characters of degree one. Summing the squares of the
degrees, we get 2m = |G|, so these are all of the irreducible characters of G. Thus, there are
(m+3)/2 irreducible characters and the character table is as follows (1 ≤ j ≤ (m− 1)/2):

ai bai

ψ0 = 1 1 1
ψ1 1 −1
λj
G 2 cos 2πij

m 0

There are (m+ 3)/2 conjugacy classes, namely,

{1},
{ai, am−i} (1 ≤ i ≤ (m− 1)/2),

{bai | 0 ≤ i < m}.

Exercise 10

Let Q8 be the subgroup of GL2(C) generated by A =

[
0 1
−1 0

]
and B =

[
0 i
i 0

]
. Show that Q8

and D4 have the same character table, yet Q8 ̸∼= D4. (Hint: First check that A4 = I = B4 and that

BA = A3B.)
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21 The Structure of the Group Algebra

According to Maschke’s Theorem (7.1), the group algebra CG is semisimple. (See Hunger-
ford, Theorem 3.7 (i ⇔ v), p. 439. Note that CG is left Artinian. Indeed, its left ideals are
vector subspaces and, since CG is finite-dimensional, any chain of left ideals must termi-
nate.) Therefore, the Artin-Wedderburn Theorem (Hungerford, Theorem 5.4, p. 452) says
that CG is isomorphic to a direct sum of matrix algebras with the entries of each matrix
algebra coming from a division algebra over C. In this section, we give an elementary proof
of this special case of the Artin-Wedderburn Theorem using the representation theory we
have developed.

Let χ1, . . . , χt be the irreducible characters of G. For 1 ≤ i ≤ t, let Ri : G → GLni(C)
be a matrix representation of G affording χi and note that ni = χi(e). We extend Ri
linearly to an algebra homomorphism CG → Matni(C), which we continue to denote by
Ri.

Set R = (Ri) : CG →
⊕

iMatni(C). So for x ∈ CG, we have R(x) =
(
Ri(x)

)
=(

R1(x), . . . , Rt(x)
)
. This is an algebra homomorphism, where the codomain is viewed as

an algebra under componentwise multiplication.
Let n =

∑
i ni. The set of all diagonal block matrices, with blocks of sizes n1, n2, . . . , nt,

respectively, is a subalgebra of Matn(C). It is easy to see that this subalgebra is iso-
morphic to

⊕
iMatni(C). We use this isomorphism to identify these two algebras. In

particular, for any x ∈ CG, we view R(x) as the diagonal block matrix with blocks
R1(x), R2(x), . . . , Rt(x), respectively.

21.1 The map R : CG→
⊕

iMatni(C) is an algebra isomorphism.

Proof. It was observed above that R is an algebra homomorphism. The dimension
of both algebras is |G| =

∑
i n

2
i (see 11.2), so it suffices to show that R is injective. For

this, it is enough to find a map S :
⊕

iMatni(C) → CG such that S ◦ R = 1. Set
S((Di)) =

∑
a∈G βaa, where

βa =
1

|G|
∑
i

ni tr
(
Ri(a

−1)Di

)
.

If x =
∑
a∈G αaa ∈ CG, then (S ◦R)(x) = S

(
(Ri(x))

)
=
∑
a∈G βaa, where

βa =
1

|G|
∑
i

ni tr

(
Ri(a

−1)Ri

(∑
b∈G

αbb

))
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=
1

|G|
∑
i

ni
∑
b∈G

αb tr
(
Ri(a

−1b)
)

=
1

|G|
∑
b∈G

αb
∑
i

χi(e)χi(b−1a)

=
1

|G|
∑
b∈G

αb|G|δab

= αa,

using 11.1 for the next to the last equality. �
There are several obvious structural features of

⊕
iMatni(C), which carry over to CG

thanks to 21.1. We point out a few of these features next.
Set B =

⊕
iMatni(C). For each 1 ≤ i ≤ t, set

Bi = (0, . . . , 0,
i

Matni(C), 0, . . . , 0)

and put Ai = R−1(Bi).

21.2 Let the notation be as above.

(1) Each Ai is an ideal of CG and CG =
∑̇
iAi.

(2) Let Li be a simple CG-module affording χi. Then Ai is a direct sum of ni left
ideals, each CG-isomorphic to Li. In particular, CG ∼=

⊕
i niLi as CG-modules.

(3) Let ei =
ni

|G|
∑
a∈G χi(a

−1)a. Then ei is a multiplicative identity of Ai and
∑
i ei =

1 ∈ CG.

Proof. (1) Clearly each Bi is an ideal of B and B =
∑̇
iBi, so the statement follows

from 21.1.
(2) For each 1 ≤ j ≤ ni, let Bij be the subspace of B consisting of those matrices

having nonzero entries confined to the jth column of the ith block. In particular, Bij ⊆ Bi.

Clearly, Bij is a left ideal of B and Bi =
∑̇
jBij . Therefore, each Aij := R−1(Bij) is a left

ideal of CG and Ai =
∑̇
jAij .

We claim that Aij ∼= Li as CG-modules. To prove this, it suffices to show that Bij ∼= Li,
where the B-module Bij is viewed as a CG-module via R. Now Li can be identified with
Cni (= space of ni-dimensional column vectors over C), which is a CG-module with
multiplication xl = Ri(x)l (x ∈ CG, l ∈ Cni), the product on the right being matrix
multiplication. Let φ : Li = Cni → Bij be the natural map. Then

φ(xl) = φ
(
Ri(x)l

)
=
(
0, . . . , 0,

(i,j)

Ri(x)l, 0, . . . , 0
)
= R(x)φ(l) = xφ(l)

(x ∈ CG, l ∈ Li), where the superscript (i, j) signifies the jth column of the ith block.
Therefore, φ is a CG-isomorphism.

Finally,

CG =
∑̇

i
Ai =

∑̇
i,j
Aij ∼=

⊕
i

niLi.
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(3) Let Ei = (0, . . . , 0, Ini , 0, . . . , 0) ∈ B. Then, with notation as in the proof of 21.1,
we have

R−1(Ei) = S(Ei) =
ni
|G|

∑
a∈G

χi(a
−1)a = ei.

Therefore, by 21.1 it suffices to show that Ei is a multiplicative identity of Bi and that∑
iEi = I, both of which are clear. �
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22 The Center of the Group Algebra

In the last section, we saw that many structural properties of the group algebraCG become
transparent once it is identified with a direct sum of matrix algebras. Here, we continue
using this technique to study the center of CG. (The center Z(R) of a ring R is the
set of those elements of R that commute with all other elements: Z(R) := {z ∈ R | zr =
rz for all r ∈ R}.)

22.1 Let n be a positive integer. The center of Matn(C) is the set {αI |α ∈ C} of all
scalar matrices.

Proof. First, the set of scalar matrices is clearly contained in the center of Matn(C).
Now, let [αij ] be in the center of Matn(C) and let Ekl = [eij ] be the n × n-matrix with
1 in the (k, l)-position and zeros elsewhere. Since [αij ]Ekl = Ekl[αij ], we have for all
1 ≤ i, k, l ≤ n

αik =
∑
j

αijejl =
∑
j

eijαjl = αllδik.

For i ̸= k, we have αik = 0, while, for any 1 ≤ i, l ≤ n, we have αii = αll. �

Remark. This result also follows from Schur’s Lemma (6.2). (Actually, for this we re-
quire the G in the statement of Schur’s Lemma to have infinite order. Defining a represen-
tation of an infinite G just like we did for finite G, it is easily checked that representations
still correspond to CG-modules where now CG consists of only finite linear combinations
of group elements. The proof of Schur’s Lemma is seen to be valid in this setting.) Set
G = GLn(C) and V = Cn. We view V as a CG-module via matrix multiplication. It is
easy to see that V is simple as such. Let A be in the center of Matn(C) and let f : V → V
be multiplication by A. Then for all a ∈ G, v ∈ V we have f(av) = Aav = aAv = af(v),
so f is a CG-homomorphism. By Schur’s Lemma, f = α1V for some α ∈ C, whence
A = αI.

Let the notation be as in Section 21. According to 21.1, R : CG→
⊕t

i=1 Matni(C) is an
algebra isomorphism. Therefore, Rmaps the center Z = Z(CG) ofCG isomorphically onto

the center of
⊕

iMatni(C), which, by 22.1, is
∑̇
iCEi, where Ei = (0, . . . , 0, Ini , 0, . . . , 0).

Therefore, if z ∈ Z, then R(z) =
∑
i ωi(z)Ei for unique ωi(z) ∈ C. This defines for each

1 ≤ i ≤ t a map ωi : Z → C. Clearly, each ωi is an algebra homomorphism.
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22.2 If z =
∑
a∈G αaa ∈ Z, then for each 1 ≤ i ≤ t we have

ωi(z) =
1

ni

∑
a∈G

αaχi(a).

Proof. Let 1 ≤ i ≤ t. The given formula for ωi is linear in z, so it suffices to check
its validity on a basis for Z. Since {Ei | 1 ≤ i ≤ t} is clearly a basis for the center of⊕

iMatni
(C), the set {ei | 1 ≤ i ≤ t} is a basis for Z, where ei = S(Ei) =

ni

|G|
∑
a χi(a

−1)a

(S as in the proof of 21.1). For each 1 ≤ j ≤ t, we have

ωi(ej) = δij =
1

|G|
∑
a

χj(a
−1)χi(a) =

1

ni

∑
a

nj
|G|

χj(a
−1)χi(a).

This completes the proof. �

Let C1, . . . , Ct be the conjugacy classes of G (there are t such by 10.3) and for each
1 ≤ i ≤ t, set si =

∑
c∈Ci

c.

22.3 With notation as above, {si | 1 ≤ i ≤ t} is a basis for Z.

Proof. Since the sets Ci (1 ≤ i ≤ t) are pairwise disjoint, {si} is linearly independent.
Therefore, it remains to show that this set spans Z.

Let x =
∑
a∈G αaa ∈ CG. We have

x ∈ Z ⇐⇒ g−1xg = x for all g ∈ G

⇐⇒
∑
a∈G

αag
−1ag =

∑
a∈G

αaa for all g ∈ G

⇐⇒
∑
a∈G

αgag−1a =
∑
a∈G

αaa for all g ∈ G

⇐⇒ αgag−1 = αa for all a, g ∈ G.

In other words, x is in Z if and only if the function a 7→ αa is constant on conjugacy classes
(i.e., is a class function). In particular, each si is in Z so the span of {si} is contained in
Z. On the other hand, suppose x ∈ Z. Then for each 1 ≤ i ≤ t, we get a well-defined
complex number βi by setting βi = αc for any c ∈ Ci. Then

x =
∑
a∈G

αaa =

t∑
i=1

∑
c∈Ci

αcc =

t∑
i=1

βi
∑
c∈Ci

c =

t∑
i=1

βisi,

so that {si} spans Z, as desired. �

Remark. The proof of 22.2 shows that {ei | 1 ≤ i ≤ t} is a basis of Z. This, together
with 22.3 provides another proof of 10.3.



58

23 Some Algebraic Number Theory

We need some standard results from algebraic number theory in order to utilize some of
the more subtle properties of characters.

The first result is a statement about Z-modules. Since “Z-module” is the same as
“abelian group,” it could be recast as a statement about abelian groups as well.

23.1 Any submodule of a finitely generated Z-module is finitely generated.

Proof. Let A be a finitely generated Z-module and let H be a submodule of A. We
have A = ⟨a1, . . . , an⟩ =

∑
i Zai for some ai ∈ A. We proceed by induction on n. If n = 1,

then A is cyclic, so that H is cyclic as well and hence finitely generated. Now assume
n > 1. Let

I = {z1 ∈ Z |h = z1a1 + · · ·+ znan for some h ∈ H and some z2, . . . , zn ∈ Z}.

Clearly I is an ideal of Z, so I = (z) for some z ∈ Z. Since z ∈ I, we have h0 =
za1 + z2a2 + · · · + znan for some h0 ∈ H and some z2, . . . , zn ∈ Z. Let A1 =

∑
i>1 Zai

and put H1 = H ∩ A1. By the induction hypothesis, H1 =
∑m
i=1 Zhi for some m and

some hi ∈ H. But then, H = Zh0 +
∑m
i=1 Zhi. Indeed, if h ∈ H, then we have h =

z1za1 + z2a2 + · · ·+ znan for some zi ∈ Z, so h− z1h0 ∈ H1. Thus H equals ⟨h0, . . . , hm⟩
and is hence finitely generated. �

Let R be a commutative ring with identity. An element α of R is integral over Z
if f(α) = 0 for some monic f ∈ Z[x] (i.e., for some f ∈ Z[x] of the form f(x) = xn +
zn−1x

n−1 + · · ·+ z1x+ z0).
Let S be a subring of R and letX be a subset of R. The subring of R generated by the set

S∪X is denoted S[X]. We write Z[X] to mean (Z·1R)[X]. Suppose X = {α1, . . . , αn}. We
write S[α1, . . . , αn] for S[X]. We have S[α1, . . . , αn] = {g(α1, . . . , αn) | g ∈ S[x1, . . . , xn]}.
Indeed, the set on the right is contained in every subring of R containing S ∪{α1, . . . , αn}
and it is a subring of R since it is the image of the evaluation map S[x1, . . . , xn] → R
obtained by replacing the xi in a polynomial with the αi. Finally, it is an easy exercise to
show that S[α1, . . . , αn] = S[α1, . . . , αn−1][αn].

23.2 Let α ∈ R. The following are equivalent:

(1) α is integral over Z,
(2) Z[α] is finitely generated as Z-module,
(3) Z[α] is contained in a finitely generated Z-submodule of R.
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Proof. (1⇒2) Assume α is integral over Z. We have f(α) = 0 for some monic f ∈ Z[x]
of degree, say, n. We claim that Z[α] = ⟨1, α, . . . , αn−1⟩. Since Z[α] = {g(α) | g ∈ Z[x]},
it is enough to show that αm ∈ ⟨1, α, . . . , αn−1⟩ for each m ≥ 0. We proceed by induction
on m. The case m ≤ n− 1 is clear so assume m ≥ n. We have

0 = αm−nf(α) = αm−n(αn + zn−1α
n−1 + · · ·+ z1α+ z0)

= αm + zn−1α
m−1 + · · ·+ z1α

m−n+1 + z0α
m−n,

where f(x) = xn + zn−1x
n−1 + · · ·+ z1x1 + z0. So

αm = −zn−1α
m−1 − · · · − z1α

m−n+1 − z0α
m−n ∈ ⟨1, α, . . . , αn−1⟩

by the induction hypothesis.
(2⇒1) Assume Z[α] is finitely generated as Z-module. Then Z[α] = ⟨y1, . . . , ys⟩ for

some yi ∈ Z[α]. In turn, for each 1 ≤ i ≤ s, we have yi = fi(α) for some fi ∈ Z[x]. Choose
a positive integer n with n > deg fi for all i. Then αn =

∑
i ziyi =

∑
i zifi(α) for some

zi ∈ Z. Hence α is a zero of the monic polynomial xn −
∑
i zifi(x).

(2⇒3) This is trivial.
(3⇒2) This follows directly from 23.1. �

Set O(R) = {α ∈ R |α is integral over Z}.

23.3 O(R) is a subring of R.

Proof. Clearly 0 ∈ O(R). Let α, β ∈ O(R). By 23.2, Z[α] and Z[β] are both finitely
generated Z-modules, say Z[α] = ⟨α1, . . . , αm⟩ and Z[β] = ⟨β1, . . . , βn⟩. Then

Z[α, β] = Z[α][β] =

(∑
i

Zαi

)
[β] =

∑
i

Z[β]αi =
∑
i,j

Zβjαi,

so that Z[α, β] is a finitely generated Z-module. The subrings Z[α+ β], Z[−α], and Z[αβ]
are contained in Z[α, β], so 23.2(1⇔3) implies that α+ β, −α, and αβ are in O(R). This
shows that O(R) is a subring of R, as desired. �

Put O = O(C). The elements of O are called algebraic integers.

23.4 We have O ∩Q = Z.

Proof. It is clear that O ∩Q contains the set Z. Now let α ∈ O ∩Q. Then we can
write α = p/q with p and q relatively prime integers, and with q positive. Since α ∈ O, we
have f(α) = 0 for some f(x) = xn + zn−1x

n−1 + · · ·+ z1x+ z0 ∈ Z[x]. Hence,

pn + zn−1p
n−1q + zn−2p

n−2q2 + · · ·+ z1pq
n−1 + z0q

n = 0.

This shows that any prime divisor of q must also be a divisor of p. But p and q are
relatively prime, so it follows that q = 1, whence α = p ∈ Z. �

Remark. The elements of O are often referred to as just “integers.” The elements of Z
are then called “rational integers,” the terminology being justified by 23.4.
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24 Character Degrees and the Group Order

The results from algebraic number theory obtained in the last section will be applied here
to show that the degree of any irreducible character of G divides the order of G.

Recall that O = O(C) denotes the ring of (algebraic) integers.

24.1 If χ is a character of G, then χ(a) is an element of O for each a ∈ G.

Proof. First note that each root of unity lies inO as it is a zero of the monic polynomial
xn − 1 for some n. If χ is a character of G, then for each a ∈ G, χ(a) is a sum of roots of
unity, by 8.5(2), and hence lies in O. �

As earlier, we use Z to denote the center of the group algebra CG, we let χ1, . . . , χt be
the distinct irreducible characters of G, and we put ni = χi(e) (1 ≤ i ≤ t).

24.2 Let x =
∑
a∈G αaa ∈ Z and assume αa ∈ O for each a. Then x ∈ O(Z). In

particular, 1
ni

∑
a αaχi(a) ∈ O for each 1 ≤ i ≤ t.

Proof. For each 1 ≤ i ≤ t, 22.2 gives ωi(x) =
1
ni

∑
a αaχi(a). Therefore, since a ring

homomorphism preserves integral elements, the second statement follows from the first.
By 22.3, x is a linear combination of class sums: x =

∑t
i=1 βisi, where si =

∑
c∈Ci

c.
Since the conjugacy classes are mutually disjoint, linear independence of the group elements
allows us to conclude that for each i, βi = αc for every c ∈ Ci. In particular, each βi is
in O. Recall that we view C as a subring of CG by identifying α ↔ αe. With this
identification we clearly have O ⊆ O(Z) so that each βi is in O(Z). Therefore, in order to
establish our claim that x is in O(Z) it is enough, by the closure properties of the subring
O(Z), to show that each si is in O(Z).

Fix 1 ≤ j, k ≤ t. As sjsk is in Z, 22.3 gives sjsk =
∑
l γlsl for some γl ∈ C. On

the other hand, sjsk is clearly a Z-linear combination of group elements. Using the linear
independence of the group elements and arguing as above, we find that each γl is in Z.

The preceding paragraph shows that
∑
j Zsj is a subring of Z. Since this subring is

finitely generated as Z-module and since it contains each Z[si], we have from 23.2(3⇒1)
that si is in O(Z) for each i. This completes the proof. �

24.3 The degree of any irreducible character of G divides the order of G.

Proof. Fix 1 ≤ i ≤ t and let

x =
∑
a∈G

χi(a
−1)a =

∑
a∈G

χi(a)a.
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Since χi is a class function (8.5(4)), we have x ∈ Z by 22.3 (or its proof). Also, χi(a
−1) ∈ O

for each a ∈ G by 24.1. Therefore, using the orthogonality relation 9.4 and then 24.2 and
23.4 in succession, we obtain

|G|
ni

=
1

ni

∑
a∈G

χi(a
−1)χi(a) ∈ O ∩Q = Z.

(We have to look back to the fraction |G|/ni to see why the second member lies in Q as
well.) Therefore, ni divides |G|, as desired. �
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25 Burnside’s Theorem on Solvability

The group G is solvable if all its composition factors are abelian (so called for the connec-
tion with solvability by radicals of polynomials via Galois Theory). Burnside’s Theorem
states that if the order of G is divisible by at most two prime numbers, then G is solv-
able. The original proof, which we present here, uses character theory. Fairly recently a
character-free proof has been found, but the original proof is much shorter. We begin by
reviewing some results from basic algebra.

If α ∈ C, then Q(α) denotes the subfield of C generated by Q ∪ α.

25.1 Let α ∈ O and let fα ∈ Q[x] be a monic polynomial of minimal degree such that
fα(α) = 0.

(1) If g ∈ Q[x] and g(α) = 0, then fα divides g. In particular, fα is the unique
irreducible monic polynomial in Q[x] for which fα(α) = 0.

(2) We have fα(x) =
∏
i(x − αi) with α1(= α), α2 . . . , αn distinct elements of O. In

particular, N(α) :=
∏
i αi is an integer and N(α) ̸= 0 if α ̸= 0.

(3) For each 1 ≤ i ≤ n, there exists a field isomorphism σi : Q(α) → Q(αi) such that
σi(α) = αi.

Remark. fα is called the minimal polynomial of α and N(α) is called the norm of
α.

Proof. (1) First, since α is inO, it is a zero of a monic polynomial in Z[x] ⊆ Q[x], so fα
is defined. Let g ∈ Q[x] and assume that g(α) = 0. By the division algorithm, there exist
q, r ∈ Q[x] with deg r < deg fα such that g = qfα+r. Hence r(α) = g(α)−q(α)fα(α) = 0.
If r ̸= 0, then we can divide r by its leading coefficient to get a monic polynomial of degree
less than the degree of fα having α as a zero, a contradiction. So r = 0 and g = qfa.
Therefore, fα|g.

Suppose fα has a factorization fα = gh with deg g, deg h < deg fα. We have g(α)h(α) =
fα(α) = 0 so that g(α) = 0 or h(α) = 0. In either case, we get a contradiction to the choice
of fα (after dividing by leading coefficients to make the polynomials monic if necessary).
Therefore, fα is irreducible.

Let g ∈ Q[x] be an irreducible monic polynomial such that g(α) = 0. By the first
statement, fα divides g and, since g is irreducible, we have g = βfα for some β ∈ Q. But
g and fa are monic, so β = 1 and g = fα. This proves the uniqueness statement.

(2) Since C is algebraically closed, fα(x) =
∏
i(x−αi) for some αi ∈ C. Now f(α) = 0

for some monic f ∈ Z[x] and part (1) implies fα|f . Since fα(αi) = 0 we also have
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f(αi) = 0, so each αi is in O.
Suppose the αi are not all distinct, so that fα(x) = (x−αi)2g(x) for some g ∈ C[x] and

some i. Then f ′α(x) = (x−αi)2g′(x)+2(x−αi)g(x) implying f ′α(αi) = 0. Now fα(αi) = 0
so part (1) gives fαi = fα, implying deg f ′α < deg fα = deg fαi contrary to the definition
of fαi . Hence α1, . . . , αn are distinct.

Note that fα(x) =
∏
i(x − αi) = xn + · · · ± N(α), so N(α) ∈ Q. But also, N(α) ∈ O

since each αi ∈ O and O is a subring of C. Hence N(α) ∈ Q ∩ O = Z by 23.4.
Finally, assume N(α) = 0. Then αi = 0 for some i so that fα(x) = fαi(x) = x giving

α = fα(α) = 0.
(3) By evaluating polynomials at αi we obtain a ring epimorphism Q[x] → Q[αi].

The kernel of this map is (fαi) which is maximal since fαi is irreducible. Therefore,
Q[αi] ∼= Q[x]/(fαi) is a field. In particular, Q[αi] = Q(αi). Now fαi = fα, so we get
isomorphisms Q(α) → Q[x]/(fα) → Q(αi) the composition of which sends α to αi. �

Next, we record a fact about roots of unity.

25.2 Let ω1, ω2, . . . , ωn ∈ C be roots of unity. We have |ω1 + ω2 + · · ·+ ωn| ≤ n with
equality if and only if ω1 = ω2 = · · · = ωn.

Proof. An elementary result from complex analysis states that if α and β are complex
numbers, then |α+β| ≤ |α|+ |β| (“triangle inequality”) with equality if and only if β = rα
for some r ≥ 0. We now prove the claim by induction on n. The case n = 1 is trivial.
Assume n > 1. By the triangle inequality and then the induction hypothesis, we have
|ω1 + · · · + ωn| ≤ |ω1 + · · · + ωn−1| + |ωn| ≤ (n − 1) + 1 = n. Suppose we have equality:
|ω1 + · · · + ωn| = n. Then |ω1 + · · · + ωn−1| = n − 1 so the induction hypothesis gives
ω1 = ω2 = · · · = ωn−1. Also, the equality |ω1 + · · ·+ωn| = |ω1 + · · ·+ωn−1|+ |ωn| implies
ωn = r(ω1 + · · · + ωn−1) = r(n − 1)ω1 for some r ≥ 0. Taking moduli gives r(n − 1) = 1
so that ωn = ω1. The converse is obvious. �

In the proof of the next lemma we will need some results from linear algebra. Let
A ∈ Matn(C). Recall that fA(x) = det(xI − A) is the characteristic polynomial of
A. The Cayley-Hamilton theorem states that fA(A) = 0 if we view fA ∈ (Matn(C))[x] by
identifying α ∈ C with αI. Let mA ∈ C[x] be the monic polynomial of least degree for
which mA(A) = 0. Using arguments similar to those in the proof of 25.1 we find that mA

is uniquely determined and if g(A) = 0 for some g ∈ C[x], then mA|g. (However, mA is
not irreducible, in general.) mA is called the minimum polynomial of A.

25.3 Let R : G → GLn(C) be a matrix representation affording the character χ and
let a ∈ G. Then |χ(a)| ≤ n with equality if and only if R(a) ∈ C× · I.

Proof. Set A = R(a). The eigenvalues ω1, ω2, . . . , ωn of A are roots of unity and
χ(a) =

∑
i ωi, so 25.2 gives |χ(a)| ≤ n.

For the second part, the implication (⇐) is clear, so assume |χ(a)| = n. Then ω1 =
ω2 = · · · = ωn =: ω using 25.2 again. Hence, fA(x) = (x − ω)n. By the Cayley-Hamilton
theorem, fA(A) = 0. But also, g(A) = 0 where g(x) = x|G| − 1, so mA|fA and mA|g.
Since g has no multiple zeros, neither does mA, whence mA = x−ω. Therefore, A−ωI =
mA(A) = 0 and A = ωI ∈ C× · I. �
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25.4 (Burnside’s Theorem) If |G| = pxqy with p and q prime, then G is solvable.

Proof. Suppose the theorem is false and assume G is a counterexample of minimal
order.

Step 1: G is simple and nonabelian, and x, y > 0.

Let H be a normal subgroup of G with H ̸= {e}. By Lagrange’s Theorem, both H
and G/H have order of the form prqs. Suppose H ̸= G. Then |H|, |G/H| < |G| so by
the choice of G, H and G/H are both solvable. But a composition series for H can be
completed to a composition series for G by using the correspondence theorem to draw
back a composition series for G/H to G. This implies that G is solvable, a contradiction.
Whence, H = G and G is simple.

Since any abelian group is solvable, G is nonabelian. Finally, assume that y = 0.
Then G is a p-group. By Sylow’s theorem, G possesses a subnormal series with successive
quotients isomorphic to Zp, implying that G is solvable. This contradiction implies that
y > 0. Similarly, x > 0.

Step 2: G contains a conjugacy class of order qd for some d > 0.

Let P be a Sylow p-subgroup of G, so |P | = px > 1 by Step 1. Since the center of
a nontrivial finite p-group is nontrivial, there exists e ̸= a ∈ Z(P ). Let ā denote the
conjugacy class of a so that |ā| = [G : CG(a)], where CG(a) = {g ∈ G | ga = ag}. Now
CG(a) ⊇ P and CG(a) ̸= G (for otherwise a ∈ Z(G) so that {e} ̸= Z(G) ▹ G contradicting
simplicity of G if Z(G) is proper or the fact that G is nonabelian if Z(G) = G). We have
pxqy = |G| = [G : CG(a)]|CG(a)| and since px | |CG(a)| and [G : CG(a)] ̸= 1, the result
follows.

Step 3: Let Ci be a conjugacy class of order qd (d ̸= 0) as in Step 2. Then χj(Ci) ̸= 0 for
some j > 1 such that q - nj.

By an orthogonality relation (11.1), we have

0 =
∑
j

χj(Ci)χj(C1) = 1 +
∑
j>1

njχj(Ci).

Therefore, if the statement is not true, we have 1 ∈ qO, whence, q−1 ∈ O ∩ Q = Z, a
contradiction.

Step 4: χj(Ci)/nj ∈ O.

First, putting x = si =
∑
c∈Ci

c in 24.2, we get |Ci|χj(Ci)/nj ∈ O. Now, |Ci| = qd and

q - nj , so there exist integers r and s such that r|Ci|+ snj = 1. Hence,

χj(Ci)/nj = r|Ci|χj(Ci)/nj + sχj(Ci) ∈ O.

Step 5: |χj(Ci)| = nj.
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Set β = χj(Ci). By 25.3, |β| ≤ nj . Assume |β| < nj . Then |α| < 1, where α = β/nj . By
Step 4, α ∈ O, so 25.1 applies. In the notation of that result, we have for each 1 ≤ l ≤ n,
αl = σl(α) = σl(β/nj) = σl(β)/nj . Now β is a sum of nj roots of unity not all of which
are equal (since |β| < nj) so the same is true of σl(β) since σl is a field isomorphism.
Therefore, |αl| = |σl(β)|/nj < 1. Hence, |N(α)| = |

∏
l αl| < 1. But 0 ̸= N(α) ∈ Z, so this

is a contradiction. Thus, |β| = nj , as desired.

Now we can complete the proof of the theorem. Let R be a matrix representation
affording χj and set H = R−1(C× · I) ▹ G. By 25.3 and Step 5, H ̸= {e} (in fact, H
contains Ci). By simplicity of G, H = G, implying R(G) ⊆ C× · I. But since R is
irreducible, this implies nj = 1 (see Section 5), that is, χj is a character of degree 1 other
than the trivial character (j > 1). So G has at least two irreducible characters of degree
1. By Exercise 6, [G : G′] ≥ 2. Now G′ ▹G, so this implies G′ = {e}, whence G is abelian,
contrary to Step 1. Therefore, the original assumption that there exists a counterexample
to the theorem is false. This completes the proof. �


