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0 Introduction

This course is primarily a course in group theory. We will start from scratch,
even giving the definition and elementary properties of a group. However,
the material in the undergraduate group theory course will be reviewed
rather quickly and at times using an approach more sophisticated than that
used in the first course. After the review, more advanced topics in group
theory will be covered. If time permits, topics from module theory will be
included.

The course contains an introduction to category theory, which is playing
an ever-increasing role in mathematical discourse. I do not intend to suggest
that category theory is a major focus of the course (it is not), but I do want
to take a moment to say a little bit about what it is in case you are unfamiliar
with the idea.

Your experience with mathematical constructs to date has most likely
been confined to an inspection of internal structure. For instance, in group
theory you have studied things like the order of an element, the cyclic sub-
group generated by an element, the cosets of a subgroup, and so forth. In
topology (or analysis) you have studied things like limit points, interiors of
sets, boundaries of sets, least upper bounds, and so forth.

In category theory, one looks at the bigger picture. Taking the case of
groups, for example, the groups themselves become the elements as one steps
back and views the collection of all groups as a new mathematical construct,
a “category.” Information is obtained by studying the structure preserving
maps (homomorphisms) running between the groups. The standard visu-
alization is that of a directed graph, which is roughly an array of points
together with various arrows joining the points. The points represent the
groups and an arrow from one point to another represents a homomorphism
between the corresponding groups.

As a simple example of this new way of thinking, take the trivial group.
Using the internal viewpoint, one characterizes the trivial group as the group
having a single element (one has to look inside the group to see that it has
only one element). In category theory, all groups look alike (they are all
points) except for the array of arrows (homomorphisms) going out of them
and coming into them. So how is one even to recognize the trivial group
in the vast collection of all groups? A little reflection reveals that it is the
only group with a single arrow going to each other group. (I have taken the
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liberty of identifying isomorphic groups here.)
One can form other categories as well, like the category of all rings, or

the category of all topological spaces, or the category of all differentiable
manifolds. Then one can step back even further and view these categories
as points themselves with structure-preserving maps (functors) represented
by arrows between them. For instance, each pointed topological space gives
rise to a certain group, namely, its fundamental group at the distinguished
point. This correspondence defines a functor from the category of all pointed
topological spaces to the category of all groups.

By seeing how a mathematical construct interacts with other mathe-
matical constructs through functors one gains insights beyond those made
possible by an isolated study.
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1 Definition of group and examples

1.1 Definition

A group is a pair (G, ∗), where G is a set and ∗ is a binary operation on G
satisfying the following:

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G,

(ii) there exists e ∈ G such that x ∗ e = x and e ∗ x = x for all x ∈ G,

(iii) for each x ∈ G there exists y ∈ G such that x ∗ y = e and y ∗ x = e.

If (G, ∗) is a group, we say that G is a group under ∗ (or just that G is a
group, when the binary operation is clear from the context). Part (i) says
that ∗ is associative. An element e satisfying (ii) is an identity element.
An element y satisfying (iii) is an inverse of x.

1.2 Examples: Z, Q, R, C

• Z, Q, R, and C are all groups under addition. In each case, an identity
element is 0 and an inverse of x is −x.

• Q×, R×, and C× are all groups under multiplication. (The symbol
× signifies that the element 0 is omitted.) In each case, an identity
element is 1 and an inverse of x is 1/x.

1.3 Nonexamples

• Z, Q, R, and C are not groups under multiplication; the number 1 is
an identity element (and the only candidate for such), but the element
0 has no inverse.

• Z×, Q×, R×, and C× are not groups under addition. In fact, they are
not even closed under addition since, for instance, they contain 1 and
−1 but not the sum 1 + (−1) = 0.

• Z× is not a group under multiplication; the number 1 is an identity
element (and the only candidate for such), but 2 has no inverse.

9



1.4 Example: Integers modulo n

Let n be a positive integer and put Zn = {0, 1, . . . , n− 1}. Define a binary
operation + on this set by putting x + y = r, with r being the remainder
upon division by n of x + y (usual sum). For instance, if n = 5, then
4 + 3 = 2. This binary operation is addition modulo n. (Zn,+) is a
group, the group of integers modulo n.

The check that + is associative is not difficult, but it is tedious because
it requires that one check cases. (See Section 2.13 for a proof of associativity
that avoids this checking of cases.)

1.5 Example: Rn

Let n be a positive integer. The set Rn = {(x1, x2, . . . , xn) |xi ∈ R} is a
group under componentwise addition.

1.6 Example: General linear group

Let n be a positive integer. Denote by GLn(R) the set of all n×n matrices
with entries coming from R and having nonzero determinant. (GLn(R), · )
is a group, where · is usual matrix multiplication. It is the general linear
group of degree n over R.

1.7 Example: Symmetric group

Let X be a nonempty set. A bijection from X to itself is a permutation
of X. Denote by Sym(X) the set of all permutations of X. (Sym(X), ◦) is
a group, where ◦ is function composition. It is the symmetric group on
X. The identity element of this group is the identity map ε = 1X : X → X
given by ε(x) = x (x ∈ X). It is customary to use juxtaposition to denote
the composition of functions, so for σ, τ ∈ Sym(X) one writes στ to mean
σ ◦ τ .

For n ∈ N, the symmetric group of degree n (or the symmetric
group on n elements) is Sym(X), where X = {1, 2, . . . , n}. This group is
denoted Sn.

It is convenient to identify an element σ of Sn with the 2×n matrix that
displays the numbers 1 to n in the top row and each corresponding image
directly beneath:

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.
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1.8 Example: Circle group

Let U denote the set of those complex numbers that have modulus one: U =
{z ∈ C | |z| = 1}. Writing the complex number z in the form a+ bi, we have
|z| =

√
a2 + b2, so U identifies with the unit circle under the correspondence

a + bi ↔ (a, b) between the set of complex numbers and the points in the
plane. U is closed under multiplication of complex numbers and it is a group
under this binary operation, the circle group.

1.9 Example: Group of nth roots of unity

Let n be a positive integer. An nth root of unity is a complex number
z satisfying zn = 1. Let Un be the set of all nth roots of unity. Under the
correspondence a+ bi↔ (a, b) this set is identified with n points on the unit
circle spaced evenly and including (1, 0). More precisely,

Un = {e2πji/n | 0 ≤ j < n (j ∈ Z)}
= {cos(2πj/n) + i sin(2πj/n) | 0 ≤ j < n (j ∈ Z)}.

Un is closed under multiplication and it is a group under this binary opera-
tion, the group of nth roots of unity.

1 – Exercises

1–1 Put G = R\{−1}. For a, b ∈ G, put a ∗ b = a + b + ab. Prove that
(G, ∗) is a group. (Note: You need to show that ∗ is a well-defined binary
operation on G.)

1–2 Let X be a set and for subsets S and T of X put S−T = {s ∈ S | s /∈
T} and S + T = (S − T ) ∪ (T − S). Prove that (P (X),+) is an abelian
group, where P (X) denotes the power set of X (i.e., the set of all subsets
of X).

Hint: Associativity of + can be shown using an elementary (but tedious)
argument. Consider instead using the (modular) characteristic function χS :
X → Z2 of S ∈ P (X) given by

χS(x) =

{
1, if x ∈ S,
0, if x /∈ S.

Note that for S, T ∈ P (X) we have S = T if and only if χS = χT .
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2 Elementary notions

2.1 Multiplicative notation

In the definition of a group (1.1) the symbol ∗ is used to emphasize the fact
that the notation for the binary operation can be anything (e.g., +, · , ◦).
However, when referring to a group in general we will always denote the
binary operation by · , write x · y simply as xy, and call this the product of
x and y.

2.2 Abelian group

A group G is abelian if its binary operation is commutative, that is, if
xy = yx for all x, y ∈ G. A group is nonabelian if it is not abelian.

The general linear group (GLn(R), ·) is nonabelian if n ≥ 2, and the
symmetric group Sym(X) is nonabelian if |X| ≥ 3. All of the other groups
in Section 1 are abelian.

2.3 Generalized associativity

The assumption of associativity (1.1(i)) implies that when indicating the
product of three group elements it is unnecessary to use parentheses. A
routine proof by induction shows that this is true of a product of more than
three group elements as well.

For instance, let G be a group and let x, y, z, u, v ∈ G. The expression

xyzuv

can be computed as
(((xy)z)u)v

or as
((xy)(zu))v,

or using any of the other possible groupings, and the result will be the
same (provided that the order of the factors remains the same). This is
the generalized associativity property. Even though parentheses are
unnecessary, they are often used, nonetheless, to draw the reader’s attention
to particular groupings.

12



2.4 Unique identity, unique inverse

Let G be a group.

Theorem.

(i) There is a unique identity element in G.

(ii) Each element of G has a unique inverse.

Proof. (i) If e and e′ are identity elements of G, then e = ee′ = e′.
(ii) Let x ∈ G and let y and z be inverses of x. Then y = ye = y(xz) =

(yx)z = ez = z.

It now makes sense to speak of the identity of the group G; it is denoted e.
Similarly, if x ∈ G it makes sense to speak of the inverse of x; it is denoted
x−1. (For some specific groups other notations are more customary. For
instance, when the binary operation is +, one writes 0 for e and −x for
x−1.)

2.5 Left and right cancellation

Let G be a group and let x, y, z ∈ G.

Theorem.

(i) If xy = xz, then y = z.

(ii) If xz = yz, then x = y.

Proof. (i) If xy = xz, then y = ey = x−1xy = x−1xz = ez = z.
(ii) Similar.

(i) and (ii) are the left and right cancellation properties, respectively.

2.6 Properties of inverse

Let G be a group and let x, y ∈ G.

Theorem.

(i) If xy = e, then y = x−1 and x = y−1.

(ii) (x−1)−1 = x,

(iii) (xy)−1 = y−1x−1.

13



Proof. (i) Assume that xy = e. We have xy = e = xx−1, so by left cancel-
lation (2.5) we get y = x−1. Similarly, x = y−1.

(ii) Since x−1x = e, the inverse of x−1 is x (by part (i)), that is,
(x−1)−1 = x.

(iii) Since

(xy)(y−1x−1) = x(yy−1)x−1 = xex−1 = xx−1 = e,

the inverse of xy is y−1x−1 (by part (i)), that is (xy)−1 = y−1x−1.

2.7 Solving equations

Let G be a group.

Theorem. For any a, b ∈ G, there exist unique x, y ∈ G such that ax = b
and ya = b.

Proof. Let a, b ∈ G. We have ax = b, where x = a−1b. Moreover, if also
x′ ∈ G satisfies ax′ = b, then

x′ = ex′ = a−1ax′ = a−1b = x.

The statements involving y are proved similarly.

(Cf. Exercise 2–2.)

2.8 Power of element

Let G be a group and let x ∈ G. Define x0 = e and for a positive integer
n, define xn = xx · · ·x (n factors) and x−n = (x−1)n. This defines the nth
power xn of the element x for every n ∈ Z.

Theorem. For all m,n ∈ Z,

(i) x−n = (xn)−1,

(ii) xmxn = xm+n,

(iii) (xm)n = xmn.

Sketch of proof. The proofs of these formulas are carried out using induc-
tion. Various cases, depending on the signs of m and n, are treated sepa-
rately. As an aid to remembering the formulas, it is worthwhile to keep in
mind the case of positive m and n. For instance, in this case

xmxn = (xx · · ·x︸ ︷︷ ︸)
m factors

(xx · · ·x︸ ︷︷ ︸)
n factors

= xm+n,

which proves (ii) (albeit without the rigor of an inductive proof).
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If G is an additive group (meaning that the binary operation is denoted
+), then the power xn (n ∈ N) really means x+ x+ · · ·+ x (n summands),
and so it is written nx.

2.9 Order of group, order of group element

Let G be a group. The order of G, denoted |G| is the cardinality of the
set G. The group G is a finite group if |G| is finite; otherwise, G is an
infinite group. If G is finite, then the order of G is simply the number of
elements in G.

Let x ∈ G. If xn = e for some positive integer n, then the least such
positive integer is the order of x, denoted o(x). If no such integer exists,
then the order of x is defined to be ℵ0 (the cardinality of the set of integers),
and one says x has infinite order. (Cf. 3.9.)

For instance, the element x = 3 of the group Z12 has order 4, since 1x =
3, 2x = 6, 3x = 9, 4x = 0 (see Section 2.8), while the element x = 2 of the
group Q× (under multiplication) has infinite order, since xn = 2n 6= 1 = e
for all n ∈ N.

Theorem. If x ∈ G has finite order, then xm = e if and only if o(x) |m
(m ∈ Z).

Proof. Let x be an element of G of finite order n and let m ∈ Z. Assume
that xm = e. By the division algorithm, there exist integers q and r with
0 ≤ r < n such that m = qn+ r. Now

xr = xm−qn = xm(xn)−q = e(e)−q = e,

so r = 0 due to the minimality property of order. Thus, m = qn and
o(x) = n |m, as desired.

Conversely, if o(x) |m, then m = o(x)q for some integer q, whence

xm = xo(x)q = (xo(x))q = eq = e,

as desired.

2.10 Direct product of two groups

Let G1 and G2 be two groups. The set G1 × G2 = {(x1, x2) |xi ∈ Gi} is a
group under componentwise multiplication:

(x1, x2)(y1, y2) = (x1y1, x2y2).
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It is the direct product of G1 and G2.
If the symbol + is used for the binary operations in both G1 and G2, then

the direct product is written G1⊕G2 and it is called the direct sum of G1

and G2. In this case, the binary operation is componentwise addition:

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2).

A more general notion of direct product (of which Rn is an example) is
given in Section 16.1.

2.11 Operation table

Let G be a finite group. The operation table of G is the table with rows
and columns labeled with the elements of G (in a fixed order, usually with
e coming first) and with the product xy displayed in the row labeled x and
the column labeled y (x, y ∈ G).

For example, the operation table of Z4 is

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

2.12 Isomorphism

A binary structure is a pair (S, ∗) with S a nonempty set and ∗ a binary
operation on S. A group is an example of a binary structure. As with groups
we refer to a binary structure (S, ∗) by just S when no confusion can arise.

Let (S, ∗) and (T, ◦) be two binary structures. An isomorphism from
S to T is a bijection ϕ : S → T satisfying the homomorphism property:

ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y) for all x, y ∈ S.

S and T are isomorphic, written S ∼= T , if there exists an isomorphism
from S to T . (This definition appears to be asymmetrical, but in fact S ∼= T
if and only if T ∼= S by Exercise 2–3.)

Assume that S and T are isomorphic and let ϕ : S → T be an isomor-
phism. We can view ϕ as a “renaming function”; it takes an element x in S
and renames it ϕ(x) in T . Since ϕ is injective, no two elements of S end up
with the same name after renaming, and since it is surjective, every name
in T gets used. Moreover, since ϕ satisfies the homomorphism property, the

16



binary operation ◦ in T acts on the renamed elements in exactly the same
way the binary operation ∗ in S acts on the elements before renaming.

In short, the renaming function ϕ accomplishes nothing but a change
in the notation for the elements of S and a change in the symbol for the
binary operation. This means that the binary structures (S, ∗) and (T, ◦)
are exactly the same aside from notational choices.

As an illustration, we have that (Z4,+) ∼= (U4, · ). Indeed, ϕ : Z4 → U4

by

0 7−→ 1
1 7−→ i
2 7−→ −1
3 7−→ −i

is an isomorphism (Exercise 2–4). This renaming function transforms the
operation table of Z4 to that of U4 and therefore effects nothing more than
a change of notation:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

−→

· 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

2.13 Example

Since two isomorphic binary structures are identical, except possibly for
the notation used for their elements and the symbol used for their binary
operations (Section 2.12), it follows that if one has a property expressible
entirely in terms of its elements and its binary operation, then the other
must also have that property. Here is an illustration of this principle:

Theorem. Let (S, ∗) and (T, ◦) be binary structures and assume that S ∼= T .
If ∗ is associative, then so is ◦.

Proof. Assume that ∗ is associative. Let x′, y′, z′ ∈ T . Since S ∼= T , there
exists an isomorphism ϕ : S → T . Since ϕ is surjective, there exist x, y, z ∈ S
such that ϕ(x) = x′, ϕ(y) = y′, and ϕ(z) = z′. Therefore,

x′ ◦ (y′ ◦ z′) = ϕ(x) ◦ (ϕ(y) ◦ ϕ(z)) = ϕ(x) ◦ ϕ(y ∗ z) = ϕ(x ∗ (y ∗ z))
= ϕ((x ∗ y) ∗ z) = ϕ(x ∗ y) ◦ ϕ(z) = (ϕ(x) ◦ ϕ(y)) ◦ ϕ(z)

= (x′ ◦ y′) ◦ z′,

which proves that ◦ is associative.
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Recall that we refrained from proving, due to the unpleasantness of
checking cases, that the associative property holds for (Zn,+). We now
have a way around this checking of cases. By Exercise 2–4 (and Exercise
2–3), (Un, · ) ∼= (Zn,+). Now the elements of Un are complex numbers,
and it is well-known that multiplication of complex numbers is associative.
Therefore, the theorem says that + (addition modulo n) is associative as
well.

If you know a given binary structure has a certain property and you wish
to conclude that a binary structure isomorphic to that binary structure has
the same property, then it is usually safe to skip this formalism of a theorem
and proof and simply draw the conclusion. For instance, assuming a group
G is isomorphic to a group H, it is customary just to assert: if G is abelian,
then so is H; if G is finite, then so is H; if G has an element of order two,
then so does H; and so on.

2 – Exercises

2–1 Let G be a group. Assume that x2 = e for every x ∈ G. Prove that
G is abelian.

2–2 Let G be a nonempty set on which an associative binary operation
· is defined. Assume that for any a, b ∈ G there exist x, y ∈ G such that
ax = b and ya = b. Prove that G is a group (cf. Theorem of 2.7).

2–3 Prove that the property of being isomorphic (∼=) is an equivalence
relation (i.e., reflexive, symmetric, and transitive) on the class of all binary
structures.

2–4 Prove that (Zn,+) ∼= (Un, · ) (n ∈ N).

2–5 Let X be a nonempty set, let S be the set of all functions X → X,
let G be a subset of S that is closed under composition ◦ of functions, and
assume that (G, ◦) is a group.

(a) Show by example that it is possible to have |G| > 1 and G * Sym(X).

(b) Prove that if G contains an injection, then G ⊆ Sym(X).
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2–6 Prove that a group of even order has an element of order two (called
an involution).

2–7 Let G be a group and let a and b be elements of G of finite order.

(a) Prove that if ab = ba, then ab has finite order.

(b) Give an example to show that it is possible for ab to have infinite order.

Hint: For (b) consider

[
0 −1
1 0

]
and

[
0 1
−1 1

]
.

2–8 Let G be a group, let p be a prime number, and let a be an element
of G of finite order m such that p |m. Prove that if b ∈ G and bp = a, then
b has order pm.

2–9 Let G be a group. Assume that for each three-element subset {x, y, z}
of G, either xy = yx, xz = zx, or yz = zy. Prove that G is abelian.
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3 Subgroup

3.1 Definition

Let G be a group. A subset H of G is a subgroup, written H ≤ G, if

(i) e ∈ H,

(ii) x, y ∈ H implies xy ∈ H,

(iii) x ∈ H implies x−1 ∈ H.

In (i), e denotes the identity of G. Part (ii) says that H is closed under
the binary operation of G. Part (iii) says that H is closed under inversion.

If H is a subgroup of G, then H is a group in its own right with binary
operation being that obtained by restricting the binary operation on G to
H.

3.2 Proper subgroup, trivial subgroup

Let G be a group. G is a subgroup of itself. If H is a subgroup of G, but
H 6= G, then H is a proper subgroup, written H < G. The singleton set
{e} is a subgroup of G, the trivial subgroup. (Authors tend to disagree
in their use of the terms “proper” and “trivial.”)

3.3 Examples

• Z ≤ Q ≤ R (under addition).

• For any integer n, we have nZ ≤ Z, where nZ = {nm |m ∈ Z}.

• Although R× is a group under multiplication and R× ⊂ R it is not
the case that R× is a subgroup of the group R under addition.

3.4 Subgroups of the symmetric group

Let X be a nonempty set and let Y ⊆ X. Let

C(Y ) = {σ ∈ Sym(X) |σ(y) = y for all y ∈ Y }

and let
S(Y ) = {σ ∈ Sym(X) |σ(Y ) = Y }.

Then C(Y ) ≤ S(Y ) ≤ Sym(X).
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3.5 Subgroups of the general linear group

Let n be a positive integer. Let

U = {[cij ] ∈ GLn(R) | cij = 0 for all i > j},

the set of upper triangular nonsingular matrices. Let

D = {[cij ] ∈ GLn(R) | cij = 0 for all i 6= j},

the set of diagonal nonsingular matrices. Then D ≤ U ≤ GLn(R).

3.6 Centralizer of a set; Center

Let G be a group and let S be a subset of G. The centralizer of S in G
is the set CG(S) = {g ∈ G | gx = xg for all x ∈ S}. CG(S) is a subgroup of
G. When S is a singleton set {x} it is customary to write CG({x}) simply
as CG(x).

The center of G, denoted Z(G), is the centralizer of G in G, that is,
Z(G) = CG(G). Thus, Z(G) = {g ∈ G | gx = xg for all x ∈ G}, the set of
all elements of G that commute with every element of G. An element of the
center is a central element.

3.7 Intersection of subgroups is a subgroup

Let G be a group and let {Hα}α∈I be an indexed family of subgroups of G.

Theorem.
⋂
α∈I Hα is a subgroup of G.

Proof. Exercise 3–9.

3.8 Subgroup generated by a subset

Let G be a group and let S be a subset of G. Denote by 〈S〉 the intersection
of all subgroups of G containing S:

〈S〉 =
⋂
H≤G
H⊇S

H.

By 3.7, 〈S〉 is a subgroup of G, the subgroup generated by S. It is the
smallest subgroup of G containing S in the sense that if H is a subgroup of
G containing S, then 〈S〉 ⊆ H.

It is convenient to have a description of the elements of 〈S〉. In the
following theorem the empty product (i.e., the case n = 0) is interpreted to
mean e, the identity of G, and S−1 = {x−1 |x ∈ S}.
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Theorem. 〈S〉 = {x1x2 · · ·xn |n ∈ N ∪ {0}, xi ∈ S ∪ S−1}

Sketch of proof. The set on the right hand side of the equality is a subgroup
of G containing S, so it contains 〈S〉. On the other hand, every subgroup of
G that contains S must contain this set because of the closure properties,
so this set is contained in the intersection of all such subgroups, which is
〈S〉.

So the subgroup of G generated by S consists of all products of finitely
many elements of G each of which either lies in S or has inverse lying in S
(with “products” including the case of no elements, meaning e, and the case
of one element x1, meaning x1).

3.9 Cyclic subgroup generated by an element

Let G be a group and let g ∈ G. The cyclic subgroup of G generated by
g is the subgroup of G generated by the singleton set {g} (see 3.8). It is
customary to write this subgroup as 〈g〉 instead of 〈{g}〉.

Theorem.

(i) 〈g〉 = {gi | i ∈ Z}.

(ii) If o(g) = ℵ0, then the elements gi for i ∈ Z are distinct.

(iii) If o(g) = n ∈ N, then the elements gi for 0 ≤ i < n are distinct and
〈g〉 = {gi | 0 ≤ i < n} = {e, g, g2, . . . , gn−1}.

(iv) o(g) = |〈g〉|.

Proof. (i) This follows immediately from Section 3.8.
(ii) Assume that o(g) = ℵ0. If gi = gj for integers i ≤ j, then j − i ≥ 0

and gj−i = gjg−i = e, implying that j − i = 0, that is, i = j.
(iii) Assume that o(g) = n ∈ N. If gi = gj for integers 0 ≤ i ≤ j < n,

then 0 ≤ j − i < n and gj−i = gjg−i = e, implying that j − i = 0, that
is, i = j. This proves that the elements gi for 0 ≤ i < n are distinct. Let
x ∈ 〈g〉. According to (i), x = gm for some integer m. By the division
algorithm, there exist integers q and r with 0 ≤ r < n such that m = nq+r.
We have x = gm = gnq+r = (gn)qgr = egr = gr. This shows that 〈g〉 ⊆
{gi | 0 ≤ i < n}. The other inclusion follows from (i).

(iv) This follows immediately from (i), (ii), and (iii).
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3 – Exercises

3–1 Let G be a group and let H and K be subgroups of G. Prove that
H ∪K is a subgroup of G if and only if either H ⊆ K or K ⊆ H.

3–2 (Dedekind law) Let G be a group. For subsets U and V of G, define
UV = {uv |u ∈ U, v ∈ V }. Let V ⊆ G and U ⊆ W ≤ G. Prove that
UV ∩W = U(V ∩W ).

3–3 Let G be a finite group and let C be a nonempty subset of G that is
closed under the binary operation of G. Prove that C is a subgroup of G.

3–4 Let G be a group that has precisely two subgroups. Prove that the
order of G is prime.

3–5 Let X be a set and let Y be a proper subset of X. Prove that C(Y ) ∼=
Sym(X\Y ) (see Sections 3.4 and 2.12).

3–6 Let A =

[
0 1
−1 0

]
and B =

[
0 i
i 0

]
, where i2 = −1. Let H =

〈{A,B}〉 ≤ GL2(C). Prove that H has order 8.

Hint: BA = A3B.

3–7 Let G be a group that has only finitely many subgroups. Prove that
G is finite.

3–8 Let n be a positive integer. Define SLn(R = {A ∈ GLn(R) | det(A) =
1}, the special linear group of degree n over R. Prove that SLn(R) is a
subgroup of GLn(R).

3–9 Prove Theorem 3.7.
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4 Generators of a group

4.1 Definition

Let G be a group. If G = 〈S〉 for some subset S of G, then we say that G
is generated by S and we call the elements of S generators of G. G is
finitely generated if G = 〈S〉 for some finite set S.

Of course, G is always generated by the set G itself, but it is often useful
to have a small subset of G that generates G (see Examples 4.2, 4.3).

4.2 Example: General linear group

Let n ∈ N . Denote by I the identity matrix: I = [δij ] (δij = Kronecker
delta). For 1 ≤ i, j ≤ n, let eij denote the n× n matrix with 1 in the (i, j)
position and zeroes elsewhere and for λ ∈ R define bij(λ) = I + λeij . For
δ ∈ R define dδ = I + (δ − 1)e11 (the matrix obtained from I by replacing
the first diagonal entry by δ).

The proof of the following theorem requires some preliminaries from
linear algebra, which we now discuss.

Let a be an n×n matrix. The matrix bij(λ) corresponds to an elementary
row (or column) operation. Multiplying a on the left by this matrix has the
effect of adding λ times the jth row of a to the ith row of a. Similarly,
multiplying a on the right by this matrix has the effect of adding λ times
the ith column of a to the jth column of a.

For 1 ≤ i, j ≤ n and λ ∈ R×, put

xij(λ) = bji(−λ−1)bij(λ)bji(−λ−1)
= I − eii − ejj + λeij − λ−1eji

if i 6= j, and put xii(λ) = I (identity matrix). In the case i 6= j, xij(λ)
is the matrix obtained from the identity matrix by applying the following
sequence of row operations: multiply the ith row by −λ−1, multiply the jth
row by λ, interchange rows i and j. Therefore, multiplying the matrix a
on the left by xij(λ) effects these row operations (in the same order) on a.
Multiplying a on the right by xji(λ) effects the same corresponding column
operations.

Theorem. The general linear group GLn(R) is generated by the set

{bij(λ), dδ | 1 ≤ i, j ≤ n, i 6= j, λ ∈ R, δ ∈ R×}.
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Proof. Let a = [aij ] ∈ GLn(R). Set

B = Bn = 〈bij(λ) | 1 ≤ i, j ≤ n, i 6= j, λ ∈ R〉 and D = {dδ | δ ∈ R×}.

We claim that there exist b, b′ ∈ B such that bab′ ∈ D. The proof is by
induction on n. If n = 1, then a ∈ D so we can let b and b′ both be the
identity matrix.

Assume n > 1. Since a has nonzero determinant, there exist 1 ≤ i, j ≤ n
with either i 6= n or j 6= n such that aij 6= 0. The sets B and D are
closed under transposition of matrices so, by replacing a by its transpose if
necessary, we may (and do) assume that λ := aij 6= 0 for some 1 ≤ i, j ≤ n
with j 6= n. The matrix

a′ := xni(1)axjn(λ−1) ∈ BaB

has (n, n) entry equal to 1. Multiplying a′ on the left and on the right by
suitable elements of B (effecting row and column operations as described
above) produces a matrix a′′ of the form

a′′ =


∗ · · · ∗ 0
...

. . .
...

...
∗ · · · ∗ 0
0 · · · 0 1

 ∈ BaB.
The (n− 1)× (n− 1) matrix represented by the ∗’s is in GLn−1(R), which
we view as a subgroup of GLn(R) by appending to matrices the indicated
bottom row and right column. By the induction hypothesis, there exist
matrices b1 and b′1 in Bn−1 ⊆ B such that b1a

′′b′1 ∈ D (noting that these
multiplications by b1 and b′1 alter neither the bottom row nor the right
column of a′′) . Since a′′ ∈ BaB, we conclude that there exist matrices b
and b′ in B such that bab′ = d for some d ∈ D. Hence, a = b−1db′−1, which
is in the subgroup 〈S〉, where S is the set in the statement of the theorem.
Thus, GLn(R) ⊆ 〈S〉 and the theorem follows.

Note that the set of generators is closed under inversion since bij(λ)−1 =
bij(−λ) and d−1δ = dδ−1 . Therefore every matrix in GLn(R) can be written
as a product of the indicated generators (since, in the application of 3.8,
S ∪ S−1 = S).

4.3 Example: Dihedral group

Let n be an integer with n ≥ 3. Let Pn ⊂ R2 be the regular n-gon with
vertices vj = (cos(j−1)α, sin(j−1)α), j = 1, 2 . . . , n, where α = 2π/n. Then
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P3 is an equilateral triangle, P4 is a square, and so forth. Denote by D2n the
set of all symmetries of Pn, that is, the set of all distance-preserving maps
σ : R2 → R2 satisfying σ(Pn) = Pn. (D2n, ◦) is a group, the dihedral
group of order 2n. (That D2n indeed has order 2n is shown below. We
point out that some authors write Dn instead of D2n and call it the dihedral
group of degree n.)

Let σ ∈ D2n. Since σ preserves distances, it maps line segments to
congruent line segments, and hence maps the set of vertices of Pn onto itself
sending adjacent vertices to adjacent vertices. We identify each vertex vj
with its index j and thereby view σ as an element of Sn (so σ(i) = σ(j)
when σ(vi) = σ(vj)). In the 2× n matrix representation of σ the entries in
the bottom row either increase by one from left to right or they decrease by
one from left to right (interpreting n+ 1 as 1 and 0 as n).

Put

ρ =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
∈ D2n

(counterclockwise rotation through α radians) and

τ =

(
1 2 3 · · · n
1 n n− 1 · · · 2

)
∈ D2n

(reflection through x-axis).

Theorem.

(i) The dihedral group D2n is generated by the set {ρ, τ}.

(ii) The elements ρj , ρjτ for 0 ≤ j < n are distinct and

D2n = {ρj , ρjτ | 0 ≤ j < n}.

(iii) |D2n| = 2n.

Sketch of proof. From the geometrical descriptions of ρ and τ , we see that
these are both elements of D2n. The elements ρj , 0 ≤ j < n, are precisely the
permutations having the property that, in their 2×n matrix representations,
the bottom rows increase by one from left to right. Similarly, the elements
ρjτ , 0 ≤ j < n, are the permutations having bottom rows that decrease
by one from left to right. Moreover, these 2n elements are distinct. The
theorem follows.
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4.4 Cyclic group

Let G be a group. G is cyclic if G = 〈g〉 for some g ∈ G. From Theorem
3.9(i) it is clear that a cyclic group is abelian.

Z is cyclic because Z = 〈1〉. Similarly, Zn is cyclic for each n ∈ N. In
fact, these are the only cyclic groups in the sense that any cyclic group is
isomorphic to one of these as will be shown in Section 9.2.

Theorem. Every subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group and let H be a subgroup of G. Since G is
cyclic, there exists g ∈ G such that G = 〈g〉.

If H = {e}, then H = 〈e〉 and H is cyclic. Now suppose H 6= {e}. Since
every element of G, and hence H, is a power of g, it follows that gn ∈ H
for some nonzero integer n. If n < 0, then g−n = (gn)−1 ∈ H, so we may
(and do) assume that n is positive and that it is the least positive integer
for which gn ∈ H.

We claim that H = 〈gn〉. Let h ∈ H. We have h = gm for some integer
m. By the division algorithm, there exist integers q and r with 0 ≤ r < n
such that m = nq + r. Therefore,

gr = gm−nq = gm(gn)−q ∈ H,

which implies, due to the minimality of n, that r = 0. Thus, h = gm = gnq =
(gn)q ∈ 〈gn〉. This proves that H ⊆ 〈gn〉 and, since the other inclusion is
immediate, the theorem follows.

Since Z is cyclic, every subgroup of Z is cyclic and hence of the form
〈n〉 = nZ for some n ∈ Z.

4 – Exercises

4–1 Prove that the multiplicative group of positive rational numbers is
generated by the set {1/p | p is a prime number}.

4–2 Prove that the group Q is not finitely generated. (Conclude that Q
is not cyclic.)

4–3 Let G be a group, let x ∈ G, let C ⊆ Z(G), and assume G = 〈{x}∪C〉.
Prove that G is abelian.
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4–4 Find the center of the dihedral group D2n.

Hint: In order to facilitate computations, subtract one from all of the
entries in both ρ and τ to obtain functions from Zn to Zn and find formulas
to express these functions.
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5 Coset

5.1 Definition

Let G be a group, let H be a subgroup of G, and let a ∈ G. The left coset
of H determined by a is

aH = {ah |h ∈ H},

and the right coset of H determined by a is

Ha = {ha |h ∈ H}.

Note that, since e ∈ H, these sets each contain a.
If the notation for the binary operation of G is other than ·, then the

notation for a coset is adjusted accordingly. For instance, if the binary
operation is +, then aH is written a+H (= {a+ h |h ∈ H}).

5.2 Example

Let G = Z, H = 〈3〉 = 3Z. Then

0 +H = {. . . ,−6,−3, 0, 3, 6, . . .} = H,

1 +H = {. . . ,−5,−2, 1, 4, 7, . . .},
2 +H = {. . . ,−4,−1, 2, 5, 8, . . .},

3 +H = 0 +H, 4 +H = 1 +H, 5 +H = 2 +H,. . . .

5.3 Example

Let G = D8 (the dihedral group of order 8) and let the notation be as in
Example 4.3. If H = 〈τ〉 = {1, τ}, then

ρH = {ρ, ρτ} 6= {ρ, ρ3τ} = {ρ, τρ} = Hρ,

which shows that left and right cosets determined by an element need not
coincide.
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5.4 Equality of cosets

Let G be a group, let H be a subgroup of G, and let a, b ∈ G. As Example
5.2 shows, it is possible to have aH = bH with a 6= b. Here is a useful
criterion for equality of cosets:

Theorem.

(i) aH = bH if and only if a−1b ∈ H,

(ii) Ha = Hb if and only if ab−1 ∈ H.

Proof. (i) Assume that aH = bH. Then b = be ∈ bH = aH so b = ah for
some h ∈ H. Thus, a−1b = h ∈ H.

Now assume that a−1b ∈ H. Then, for any h ∈ H we have bh =
a(a−1bh) ∈ aH, implying bH ⊆ aH. Since b−1a = (a−1b)−1 ∈ H, this
argument shows that aH ⊆ bH as well, giving equality.

The proof of (ii) is similar.

For example, it was observed in 5.2 that if H = 3Z < Z, then 4 + H =
1 +H and we check that −4 + 1 = −3 is indeed in H in agreement with (i)
(noting that a−1b in additive notation is −a+ b).

5.5 Congruence modulo a subgroup

Let G be a group and let H be a subgroup of G. Define a relation ≡l on
G by putting a ≡l b if a−1b ∈ H. Then ≡l is an equivalence relation on
G (Exercise 5–4), called left congruence modulo H. Denote by [a]l the
equivalence class of a ∈ G relative to ≡l. Thus, [a]l = {b ∈ G | a ≡l b}.

Similarly, right congruence modulo H is the equivalence relation ≡r
on G obtained by putting a ≡r b if ab−1 ∈ H. The equivalence class of
a ∈ G relative to ≡r is denoted [a]r.

a ≡l b is written a ≡l b mod H if the subgroup H is not clear from the
context, and similarly for ≡r.

Theorem. For a ∈ G

(i) [a]l = aH,

(ii) [a]r = Ha.
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Proof. (i) Let x ∈ G. Then

x ∈ [a]l ⇔ a ≡l x
⇔ a−1x ∈ H
⇔ x ∈ aH.

Thus, [a]l = aH.
The proof of (ii) is similar.

5.6 Cosets partition the group

Let G be a group and let H be a subgroup of G.

Theorem. The set of left cosets of H forms a partition of G. More precisely,

(i) G =
⋃
a∈G aH,

(ii) if a, b ∈ G and aH ∩ bH 6= ∅, then aH = bH.

Proof. It is shown in set theory that any equivalence relation on a set gives
rise to a partition of the set with the equivalence classes being the cells.
Therefore, the theorem follows from Section 5.5. For the instructional value
it provides, we give an elementary proof as well:

(i) If x ∈ G, then x = xe ∈ xH ⊆
⋃
a∈G aH, so G ⊆

⋃
a∈G aH. The

other inclusion is immediate.
(ii) Let a, b ∈ G and assume that aH ∩ bH 6= ∅. Then there exists

x ∈ aH ∩ bH and we have x = ah and x = bk for some h, k ∈ H. Therefore,
ah = x = bk, so that a−1b = hk−1 ∈ H. By 5.4(i), we have aH = bH.

(The set of right cosets of H also forms a partition of G.) Example 5.2
provides an illustration of this theorem with G = Z and H = 3Z. The set
of left cosets is {a+H | a ∈ Z} = {0 +H, 1 +H, 2 +H}. Z is the union of
0 +H, 1 +H, and 2 +H, and these cosets are pairwise disjoint.

5.7 Cosets have same cardinality

Let G be a group and let H be a subgroup of G.

Theorem. For all a ∈ G,

(i) |aH| = |H|,

(ii) |Ha| = |H|.
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Proof. (i) Let a ∈ G. The function f : H → aH given by f(h) = ah
is surjective by the definition of the coset aH and it is injective by the
cancellation property. Therefore, f is a bijection and we conclude that
|aH| = |H|.

The proof of (ii) is similar.

In particular, every left coset has the same cardinality as every right coset.

5.8 Index of subgroup

Let G be a group and let H be a subgroup of G. The set of left cosets of
H and the set of right cosets of H need not be the same, but at least they
have the same cardinality:

Theorem. |{aH | a ∈ G}| = |{Ha | a ∈ G}|.

Proof. Let L = {aH, | a ∈ G} and R = {Ha | a ∈ G}. Define f : L → R by
f(aH) = Ha−1. For a, b ∈ G we have

aH = bH ⇔ a−1b ∈ H ⇔ a−1(b−1)−1 ∈ H ⇔ Ha−1 = Hb−1,

where we have used Section 5.4. This shows that f is well defined and
injective. If Ha ∈ R, then a−1H ∈ L and f(a−1H) = Ha, so f is surjective.
Therefore, f is a bijection and the claim follows.

The index of H in G, denoted |G : H|, is the cardinality of the set of
left cosets of H in G, that is, |G : H| = |{aH | a ∈ G}|. According to the
theorem, |G : H| is also the cardinality of the set of right cosets of H in G.

For example, in view of 5.2, we have |Z : 3Z| = 3.

5.9 Lagrange’s theorem

Let G be a group and let H be a subgroup of G.

Theorem. |G| = |G : H| · |H|.

Proof. Let A be a complete system of representatives for the left cosets
of H in G. Thus G =

⋃
a∈A aH, and for a, a′ ∈ A, aH ∩ a′H 6= ∅ if

and only if a = a′ (such an A exists by 5.6). Define f : A × H → G
by f((a, h)) = ah. Since G is the union of {aH | a ∈ A}, f is surjective.
Let (a, h), (a′, h′) ∈ A × H and assume that f((a, h)) = f((a′, h′)). Then
ah = a′h′, so that ah ∈ aH ∩ a′H. This implies that a = a′ and, in turn,
h = h′, so that (a, h) = (a′, h′). Therefore, f is injective. Since f is bijective,
we have |G| = |A×H| =: |A| · |H| = |G : H| · |H|, as claimed.
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For instance, if G = Z12 and H = 〈3〉 = {0, 3, 6, 9}, then the set of left
cosets of H in G is {0 +H, 1 +H, 2 +H}, so |G| = 12 = 3 · 4 = |G : H| · |H|
in agreement with the theorem.

If G is finite, the theorem says that the order of H divides the order of
G and

|G : H| = |G|
|H|

.

5.10 Corollaries of Lagrange’s theorem

Let G be a finite group.

Corollary. If the order of G is prime, then G is cyclic.

Proof. Assume that the order of G is prime. Since a prime is at least two, G
has a nonidentity element a. The order of the subgroup 〈a〉 generated by a
is greater than one and divides |G| by Lagrange’s theorem (5.9). Therefore,
|〈a〉| = |G| and we have G = 〈a〉. Thus, G is cyclic.

Corollary. The order of each element of G divides the order of G.

Proof. The order of an element equals the cardinality of the cyclic subgroup
generated by that element (see 3.9), so the claim follows immediately from
Lagrange’s theorem (5.9).

Corollary. For each x ∈ G we have x|G| = e.

Proof. Let x ∈ G. By the previous corollary, |G| = o(x)n for some n ∈ N.
Thus x|G| = (xo(x))n = en = e.

5 – Exercises

5–1 Let G be a group and let H and K be subgroups of G. For x ∈ G,
put HxK = {hxk | h ∈ H, k ∈ K} (called the (H,K) double coset of G
determined by x).

(a) Define a relation on G by putting x ∼ y if x = hyk for some h ∈
H and k ∈ K. Prove that ∼ is an equivalence relation and that
the equivalence class of x ∈ G relative to this equivalence relation is
precisely HxK. (Conclude that the distinct (H,K) double cosets of
G are disjoint and form a partition of G.)
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(b) Prove that for each x ∈ G, the double coset HxK is a union of right
cosets of H and the cardinality of the set of these cosets is |K : K∩Hx|,
where Hx = x−1Hx = {x−1hx | h ∈ H}.

Hint: For (b) find a bijection from the set of right cosets of H in HxK to
the set of right cosets of K ∩Hx in K.

5–2 Let G be a group and let H and K be finite subgroups of G having
relatively prime orders (i.e., gcd(|H|, |K|) = 1). Prove that H ∩K = {e}.

5–3 Let G be an abelian group of order 2n with n odd. Prove that G has
precisely one element of order 2 (cf. Exercise 2–6).

5–4 Let G be a group and let H be a subgroup of G. Prove that ≡l (that
is, ≡l mod H) is an equivalence relation relation on G. (An equivalence
relation is a relation that is reflexive, symmetric, and transitive.)

5–5 Let G = 〈g〉 be a cyclic group and let m be an integer. Prove that gm

is a generator of G if and only if gcd(m, o(g)) = 1.

Hint: If a, b ∈ Z, then gcd(a, b) = 1 if and only if aj + bk = 1 for some
integers j and k.
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6 Normal Subgroup

6.1 Conjugation

Let G be a group. For x, g ∈ G define xg = g−1xg, the conjugate of x
by g. The notation xg is convenient because it obeys some familiar laws of
exponents:

Theorem. For x, y, g, h ∈ G,

(i) xe = x,

(ii) (xg)h = xgh,

(iii) (xy)g = xgyg.

Let x, y ∈ G. The element x is conjugate to the element y if xg = y
for some g ∈ G. The relation ∼ on G obtained by putting x ∼ y if x is
conjugate to y is an equivalence relation on G. The equivalence class of
x ∈ G relative to this equivalence relation is xG = {xg | g ∈ G}, called the
conjugacy class of x.

More generally, for S ⊆ G and g ∈ G define Sg = {xg |x ∈ S}, the
conjugate of S by g. The theorem remains valid if one replaces x, y ∈ G
with S, T ⊆ G. If H is a subgroup of G and g ∈ G, then Hg is a subgroup
of G.

6.2 Example: Conjugation and change of basis

The notion of conjugation arises in linear algebra when one considers the
effect of a basis change on the matrix of a linear transformation.

Let n be a positive integer, let T : Cn → Cn be an invertible linear trans-
formation, and let B = (v1, v2, . . . , vn) be an ordered basis of Cn. The ma-
trix of T relative to B is the matrix A = [aij ] defined by T (vi) =

∑
j aijvj .

Invertibility of T implies that A ∈ GLn(C). Let C = (w1, w2, . . . , wn) be
another ordered basis of Cn. Writing vi =

∑
j pijwj (1 ≤ j ≤ n), we get the

change of basis matrix P = [pij ] ∈ GLn(C). The matrix of T relative to
C is the conjugate P−1AP .

It is natural to ask whether there is a basis of Cn relative to which the
matrix of T is particularly simple, say, a diagonal matrix. This is the same
as asking whether A is conjugate to such a matrix. The next theorem says
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that A is conjugate to a matrix that, if not diagonal, is at least almost
diagonal.

For λ ∈ C and a positive integer m, the corresponding Jordan block
matrix is the m×m matrix

Jλ,m =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .

Theorem (Jordan Canonical Form). There exist nonzero λ1, λ2, . . . , λs ∈ C
and positive integers m1,m2, . . . ,ms such that A is conjugate to the block
diagonal matrix

diag(Jλ1,m1 , Jλ2,m2 , . . . , Jλs,ms).

The Jordan blocks Jλi,mi
are uniquely determined up to order.

This theorem follows from a very general theorem about finitely gener-
ated modules over a principal ideal domain.

6.3 Definition of normal subgroup

Let G be a group. A subgroup H of G is a normal subgroup, written
H / G, if Hg = H for all g ∈ G. There are various characterizations of
normality, each of which proves useful in some situations:

Theorem. Let H be a subgroup of G. The following are equivalent:

(i) H / G;

(ii) Hg = gH for all g ∈ G;

(iii) Hg ⊆ H for all g ∈ G;

(iv) hg ∈ H for all h ∈ H, g ∈ G.

Proof. For g ∈ G,

Hg = H ⇐⇒ g−1Hg = H ⇐⇒ Hg = gH,

so (i) and (ii) are equivalent.
That (iii) and (iv) are equivalent is immediate, as is the fact that (i)

implies (iii).
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Therefore, a proof that (iii) implies (i) will establish the proof. Assuming
(iii), we have for every g ∈ G

Hg ⊆ H and H = (Hg−1
)g ⊆ Hg,

implying Hg = H. The proof is complete.

Another useful characterization is given in Theorem 6.4(ii).
The equivalence of (i) and (iii) suggests that it might be the case that,

for any g ∈ G, we have the equality Hg = H if and only if Hg ⊆ H. This
does not hold in general (see Exercise 6–1), but it does hold if G is finite.

Let H/G and let g ∈ G. In view of (i)⇒(ii) we can drop the terms “left”
and “right” in referring to cosets of H and define the coset of H determined
by g to be either gH or Hg.

We record a few simple observations about normal subgroups:

• G and {e} are both normal subgroups of G.

• If H is a subgroup of G contained in the center Z(G) of G, then H is
normal. In particular, Z(G) is a normal subgroup of G.

• If G is abelian, then every subgroup of G is normal.

6.4 Normalizer of a set

Let G be a group and let S be a subset of G. The normalizer of S in G is
the set NG(S) = {g ∈ G |Sg = S}. NG(S) is a subgroup of G.

Theorem. Let H and K be subgroups of G.

(i) H / NG(H).

(ii) H / G if and only if NG(H) = G.

(iii) If H /K, then K ⊆ NG(H).

Proof. Since H is a normal subgroup of itself, it follows that H ⊆ NG(H).
The remaining parts of the theorem are immediate from the definitions.

It follows from parts (i) and (iii) that NG(H) is the largest subgroup of
G having H as a normal subgroup.
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6.5 Product of subgroup and normal subgroup

Let G be a group. For subsets S and T of G, define the product ST =
{st | s ∈ S, t ∈ T}.

Theorem. Let H,K ≤ G and assume that H ⊆ NG(K).

(i) HK = KH,

(ii) HK ≤ G,

(iii) 〈H ∪K〉 = HK.

In particular, if H / G, then (i)–(iii) hold.

Proof. (i) For each h ∈ H, we have hK = hKh = Kh. Thus HK = KH.
(ii) First, e = ee ∈ HK. Next, using (i) we have

(HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) ⊆ HK,

so HK is closed under multiplication. Finally, (HK)−1 = K−1H−1 ⊆
KH = HK, so HK is closed under inversion. Thus, HK ≤ G.

(iii) H = He ⊆ HK and K = eK ⊆ HK, so HK contains H ∪K. Since
HK is a subgroup of G (by (ii)) we have 〈H ∪ K〉 ⊆ HK. On the other
hand, every subgroup of G containing H ∪K must contain HK by closure.
Therefore, the other inclusion follows as well.

6.6 Index two subgroup is normal

Let G be a group and let H be a subgroup of G.

Theorem. If |G : H| = 2, then H / G.

Proof. Exercise 6–2.

(See Exercise 13–2 for a generalization of this theorem in the case where
G is finite.)

6.7 Normality is not transitive

Let G be a group. If H ≤ K ≤ G, then H ≤ G, so the property of being a
subgroup is transitive. However, it is not true in general that if H /K / G,
then H / G, as the following example shows.
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• Let G be the dihedral group D8 of order 8. Let

N = 〈ρ2〉 = {ε, ρ2} and H = 〈τ〉 = {ε, τ}

with notation as in Section 4.3. One easily checks that ρ2, and hence
N , is in the center of G so that N is normal. Therefore,

K = NH = {ε, τ, ρ2, ρ2τ}

is a subgroup of G (see 6.5) and it contains H.

The listed elements of K are distinct (see 4.3), so K has order 4. We
have |G : K| = 2 and |K : H| = 2, so H /K / G by Section 6.6.

However, as was shown in Section 5.3, a left coset of H need not equal
the corresponding right coset, so H is not a normal subgroup of G
(using 6.3).

This example shows that, in general, normality is not transitive. (Cf. Exer-
cise 6–3.)

6 – Exercises

6–1 Give an example to show that it is possible to have a subgroup H of
a group G satisfying both of the following:

(a) There exists an element g of G such that g /∈ NG(H) but Hg ⊆ H.

(b) {x ∈ G |Hx ⊆ H} is not a subgroup.

Hint: Consider G = GL2(R), H =

{[
1 n
0 1

]
| n ∈ Z

}
, g =

[
1/2 0
0 1

]
.

6–2 Let G be a group and let H be a subgroup of G with |G : H| = 2.
Prove that H is normal.

6–3 Let G be a group. A subgroup H of G is a characteristic subgroup,
written H charG, if ϕ(H) ⊆ H for every isomorphism ϕ : G → G. Prove
that if H and K are subgroups of G with H charK / G, then H / G.
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7 Quotient Group

7.1 Definition

Let G be a group and let N be a normal subgroup of G. Denote by G/N
the set of all (left) cosets of N in G:

G/N = {aN | a ∈ G}.

In the following theorem, (aN)(bN) denotes the product of the subsets aN
and bN of G (see Section 6.5).

Theorem.

(i) For aN, bN ∈ G/N we have (aN)(bN) = abN ∈ G/N . In particular,
this product defines a binary operation · on G/N .

(ii) (G/N, · ) is a group. Its identity element is eN (= N) and for aN ∈
G/N we have (aN)−1 = a−1N .

Proof. We first observe that NN = N . Indeed NN ⊆ N by closure and, if
n ∈ N , then n = ne ∈ NN giving the other inclusion as well.

If aN, bN ∈ G/N , then (aN)(bN) = abN bN = abNN = abN using
normality of N . This gives part (i). Associativity of coset multiplication
now follows immediately from the associativity of multiplication in G. Also,
that eN is an identity and that a−1N is an inverse of aN ∈ G/N are
immediate, so (ii) follows.

(G/N, · ) is the quotient group (or factor group) of G by N . The nota-
tion G/N is read “G modulo N” or “G mod N”.

The normality assumption on N is essential here. In fact, if H ≤ G is
not normal, then the set of left cosets of H in G is never closed under set
multiplication (see Exercise 7–1).

7.2 Example: Z/3Z

Let G = Z and N = 〈3〉 = 3Z. Then N /G (since G is abelian). The group
G/N = {0 +N, 1 +N, 2 +N} has operation table

+ 0 +N 1 +N 2 +N

0 +N 0 +N 1 +N 2 +N
1 +N 1 +N 2 +N 0 +N
2 +N 2 +N 0 +N 1 +N
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7.3 Quotient by commutator subgroup

Let G be a group. For a, b ∈ G define [a, b] = a−1b−1ab, the commutator
of a and b. The commutator subgroup (or derived subgroup) of G,
denoted G(1), is the subgroup of G generated by the set of all commutators.
In symbols

G(1) = 〈[G,G]〉,

where [G,G] = {[a, b] | a, b ∈ G}.
According to Theorem 3.8, every element of G(1) is a product of ele-

ments each of which is either a commutator or the inverse of a commutator.
Since [a, b]−1 = [b, a], the inverse of a commutator is also a commutator.
We conclude that every element of G(1) can be expressed as a product of
commutators.

Let N be a normal subgroup of G.

Theorem. G/N is abelian if and only if N ⊇ G(1).

Proof. For a and b in G,

(aN)(bN) = (bN)(aN) ⇐⇒ abN = baN

⇐⇒ (ba)−1(ab) ∈ N
⇐⇒ [a, b] = a−1b−1ab ∈ N.

The claim follows.

Since G(1) is normal (Exercise 7–3), the theorem says that it is the small-
est normal subgroup of G for which the corresponding quotient is abelian.

7.4 Simple group

Let G be a group. Since G and {e} are both normal subgroups of G one can
form the corresponding quotients:

• G/G is the one element group {G},

• G/{e} is the group {a{e} | a ∈ G} = {{a} | a ∈ G} with binary oper-
ation given by {a}{b} = {ab}, so it is isomorphic to G with {a} 7→ a
defining an isomorphism.

G is simple if it is nontrivial and G and {e} are its only normal subgroups.
For example, Zp is simple for each prime number p. Indeed, since the

order of a subgroup must divide the order of the group (5.9), {0} and Zp
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are the only subgroups of Zp (and hence the only normal subgroups). On
the other hand, if n is not prime, say n = n1n2 with 1 < ni < n, then Zn is
not simple, since o(n1) = n2 implying 〈n1〉 is a proper, nontrivial (normal)
subgroup of Zn.

The reason for the term “simple” is the fact that a simple group has only
the trivial group and itself as quotients, as seen above. It is also due to the
fact that finite simple groups are the building blocks of all finite groups (in
a sense to be made precise in Section 10.5).

7 – Exercises

7–1 Let G be a group and let H be a subgroup of G. Prove that if the set
of left cosets of H in G is closed under set multiplication, then H is normal.

7–2 Let G be a group and let H be a subgroup of the center Z(G) of G
so that, in particular, H /G. Prove that if G/H is cyclic, then G is abelian.

7–3 Let G be a group. Prove that the commutator subgroup G(1) of G is
normal.

7–4 Let G be an abelian group and let n be a positive integer. Let N be
the subgroup of G generated by the set {an | a ∈ G} and put Ḡ = G/N .
Prove that the order of every element of Ḡ divides n.

7–5 Let G be a finite abelian group and let p be a prime number. Prove
that if p divides the order of G, then G has an element of order p.

Hint: Use induction on the order of G as well as Exercise 3–4.

42



8 Homomorphism

8.1 Definitions

Let G and G′ be groups. A homomorphism from G to G′ is a function
ϕ : G→ G′ satisfying ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An isomorphism is a bijective homomorphism.

• An automorphism is an isomorphism from a group to itself.

“Isomorphism” was defined earlier in Section 2.12. Recall that two
groups G and G′ are isomorphic, written G ∼= G′, if there exists an isomor-
phism from one to the other. In this case, the groups G and G′ are identical
as far as their group properties are concerned.

8.2 Examples

• The exponential function ϕ : (R,+)→ (R+, · ) given by ϕ(x) = ex is
a homomorphism. In fact, it is an isomorphism, so (R,+) ∼= (R+, · ).

• The determinant function det : GLn(R) → R× given by A 7→ det(A)
is an epimorphism.

• Let n be a positive integer. The function ϕ : Z→ Zn given by ϕ(m) =
r, where r is the remainder of m upon division by n, is an epimorphism
called reduction modulo n.

• Let G be a group and let N be a normal subgroup of G. The function
π : G→ G/N given by π(x) = xN is an epimorphism, the canonical
epimorphism.

• Let G be a group and let g ∈ G. The function ιg : G → G given by
ιg(x) = xg is an automorphism of G, the inner automorphism of G
determined by g.
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8.3 Elementary properties

Let ϕ : G → G′ be a group homomorphism and let e′ denote the identity
element of G′.

Theorem.

(i) ϕ(e) = e′.

(ii) ϕ(x−1) = ϕ(x)−1 for each x ∈ G.

(iii) If H ≤ G, then ϕ(H) ≤ G′, where ϕ(H) = {ϕ(h) |h ∈ H}.

(iv) If H ′ ≤ G′, then ϕ−1(H ′) ≤ G, where ϕ−1(H ′) = {x ∈ G |ϕ(x) ∈ H ′}.

Proof. (i) We have
ϕ(e)ϕ(e) = ϕ(ee) = ϕ(e),

so cancellation gives ϕ(e) = e′.
(ii) Let x ∈ G. Using part (i) we have

ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(e) = e′,

so ϕ(x−1) = ϕ(x)−1.
(iii) Let H ≤ G. By (i), e′ = ϕ(e) ∈ ϕ(H). For h, k ∈ H, we have

ϕ(h)ϕ(k) = ϕ(hk) ∈ ϕ(H) and ϕ(h)−1 = ϕ(h−1) ∈ ϕ(H) (using (ii)), so
ϕ(H) is closed under both multiplication and inversion. Therefore, ϕ(H) ≤
G′.

(iv) Let H ′ ≤ G′. By (i), ϕ(e) = e′ ∈ H ′, so e ∈ ϕ−1(H ′). Let x, y ∈
ϕ−1(H ′), so that ϕ(x), ϕ(y) ∈ H ′. We have ϕ(xy) = ϕ(x)ϕ(y) ∈ H ′ and
ϕ(x−1) = ϕ(x)−1 ∈ H ′ (using (ii)), so xy, x−1 ∈ ϕ−1(H ′). This shows
that ϕ−1(H ′) is closed under both multiplication and inversion. Therefore,
ϕ−1(H ′) ≤ G.

8.4 Kernel and image

Let ϕ : G→ G′ be a homomorphism. Associated with ϕ are two important
subgroups:

• kerϕ = ϕ−1({e′}) = {x ∈ G |ϕ(x) = e′}, the kernel of ϕ,

• imϕ = ϕ(G) = {ϕ(x) |x ∈ G}, the image of ϕ.

The kernel of ϕ is a subgroup of G by Theorem 8.3(iv) with H ′ = {e′}. The
image of ϕ is a subgroup of G′ by Theorem 8.3(iii) with H = G.
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8.5 Kernel same thing as normal subgroup

Let G be a group. The following theorem says that the notions “kernel of a
homomorphism from G” and “normal subgroup of G” amount to the same
thing.

Theorem. If ϕ : G → G′ is a homomorphism, then kerϕ is a normal
subgroup of G. Conversely, if N is a normal subgroup of G, then N is
the kernel of a homomorphism from G, namely the canonical epimorphism
π : G→ G/N .

Proof. Let ϕ : G → G′ be a homomorphism. It was observed in 8.4 that
kerϕ is a subgroup of G, so it suffices to check normality, for which we use
the condition given in (iv) of 6.3. Let k ∈ kerϕ and g ∈ G. We have

ϕ(kg) = ϕ(g−1kg) = ϕ(g−1)ϕ(k)ϕ(g) = ϕ(g)−1e′ϕ(g) = e′,

which says that kg ∈ kerϕ. Thus, kerϕ is a normal subgroup of G.
Now let N be a normal subgroup of G and let π : G → G/N be the

canonical epimorphism (see 8.2). If g ∈ G, then

g ∈ kerπ ⇐⇒ π(g) = N

⇐⇒ gN = N

⇐⇒ g ∈ N,

so kerπ = N , as claimed.

8.6 Homomorphism is injective iff kernel is trivial

Let ϕ : G→ G′ be a homomorphism.

Theorem. ϕ is injective if and only if kerϕ = {e}.

Proof. Assume that ϕ is injective. Let k ∈ kerϕ. Then ϕ(k) = e′. But
also, ϕ(e) = e′ by Section 8.3. So ϕ(k) = ϕ(e) and injectivity of ϕ gives
k = e. This shows that kerϕ ⊆ {e}. Since a kernel is a subgroup, the other
inclusion is immediate.

Now assume that kerϕ = {e}. Let x, y ∈ G and assume that ϕ(x) =
ϕ(y). Then ϕ(xy−1) = ϕ(x)ϕ(y)−1 = e′, implying that xy−1 ∈ kerϕ = {e}.
Thus, xy−1 = e, that is, x = y. Therefore, ϕ is injective.

As a practical matter, we observe that, in order to show that a homo-
morphism ϕ is injective, it suffices to show that kerϕ ⊆ {e}, since the other
inclusion always holds (kerϕ is a subgroup).
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8.7 Fundamental Homomorphism Theorem

Let ϕ : G→ G′ be a homomorphism.

Fundamental Homomorphism Theorem. If N is a normal subgroup of
G with N ⊆ kerϕ, then there exists a unique homomorphism ϕ : G/N → G′

such that ϕπ = ϕ, where π : G → G/N is the canonical epimorphism. The
function ϕ is given by ϕ(aN) = ϕ(a).

Proof. Let N be a normal subgroup of G with N ⊆ kerϕ. As in the
statement of the theorem, let ϕ : G/N → G′ be the function given by
ϕ(aN) = ϕ(a).

If aN = bN (a, b ∈ G), then a−1b ∈ N ⊆ kerϕ, so that ϕ(a)−1ϕ(b) =
ϕ(a−1b) = e′, implying ϕ(a) = ϕ(b). Thus, ϕ is well defined.

For aN, bN ∈ G/N , we have

ϕ((aN)(bN)) = ϕ((ab)N) = ϕ(ab)

= ϕ(a)ϕ(b) = ϕ(aN)ϕ(bN),

so ϕ is a homomorphism.
For a ∈ G, we have

(ϕπ)(a) = ϕ(π(a)) = ϕ(aN) = ϕ(a),

giving ϕπ = ϕ.
Finally, let ψ : G/N → G′ be a homomorphism such that ψπ = ϕ. Then

for any aN ∈ G/N we have

ψ(aN) = ψ(π(a)) = (ψπ)(a) = ϕ(a) = ϕ(aN),

so that ψ = ϕ, thus establishing uniqueness.

The condition N ⊆ kerϕ is a necessary condition for the function ϕ
given in the theorem to be well defined, as the reader can check.

8 – Exercises

8–1 Let G =
{ [1 a

0 1

]
| a ∈ R

}
viewed as a group under matrix multipli-

cation. Prove that G ∼= R.
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8–2 Let G and G′ be groups, let ϕ : G → G′ be an epimorphism, let N
be a normal subgroup of G, and assume that N ∩ kerϕ = {e}. Prove that
ϕ(CG(x)) = CG′(ϕ(x)) for all x ∈ N . (See Section 3.6 for notation.)

8–3 Let G and G′ be groups and let ϕ : G→ G′ be a homomorphism.

(a) Prove that if N ′ is a normal subgroup of G′, then ϕ−1(N ′) is a normal
subgroup of G.

(b) Prove that if N is a normal subgroup of G and ϕ is surjective, then
ϕ(N) is a normal subgroup of G′.

(c) Give an example to show that without the assumption of surjectivity
in the previous part, ϕ(N) need not be a normal subgroup of G′.

8–4 Let G and G′ be groups with G finite, let ϕ : G → G′ be an epimor-
phism, let p be a prime number, and let g′ be an element of G′ of order pn

for some nonnegative integer n. Prove that there exists an element g of G
of order pm for some nonnegative integer m such that ϕ(g) = g′.
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9 Isomorphism Theorems

9.1 First Isomorphism Theorem

Let ϕ : G → G′ be a homomorphism. By Theorem 8.5, kerϕ is a normal
subgroup of G so the quotient group G/ kerϕ is defined.

Theorem (First Isomorphism Theorem).

G/ kerϕ ∼= imϕ.

Proof. Put N = kerϕ. By Section 8.7, the function ϕ : G/N → G′ given by
ϕ(aN) = ϕ(a) is a well-defined homomorphism. By restricting the codomain
to imϕ we obtain an epimorphism G/N → imϕ, which we continue to
denote by ϕ.

Let aN ∈ kerϕ. Then ϕ(a) = ϕ(aN) = e′, so that a ∈ kerϕ = N . Thus,
aN = N . This shows that kerϕ ⊆ {N} so that ϕ is injective (see 8.6).

Therefore, ϕ : G/N → imϕ is an isomorphism and G/ kerϕ = G/N ∼=
imϕ.

9.2 Example: Classification of cyclic groups

Let G be a cyclic group.

Theorem. If G is infinite, then G ∼= Z. Otherwise, G ∼= Z/nZ, where
n = |G|.

Proof. Since G is cyclic, we have G = 〈a〉 for some a ∈ G. Define ϕ : Z→ G
by ϕ(m) = am. For m,m′ ∈ Z, we have

ϕ(m+m′) = am+m′ = amam
′

= ϕ(m)ϕ(m′),

so ϕ is a homomorphism. By Section 3.9, G = {am |m ∈ Z} so ϕ is surjec-
tive.

Since Z = 〈1〉 is cyclic, so is kerϕ by 4.4, and therefore, kerϕ = 〈n〉 = nZ
for some integer n, which we can (and do) take to be nonnegative. By the
First Isomorphism Theorem (9.1), we have Z/nZ ∼= G.

If n = 0, then Z/nZ = Z/{0} ∼= Z. If n > 0, then Z/nZ = {0 + nZ, 1 +
nZ, . . . , (n − 1) + nZ} and, since these cosets are distinct, Z/nZ has order
n. The theorem follows.
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9.3 Quotient same thing as homomorphic image

Let G be a group. The following theorem says that the notions “quotient of
G” and “homomorphic image of G” amount to the same thing.

Theorem. If G/N (N / G) is a quotient of G, then G/N is isomorphic to
a homomorphic image of G, namely the image under the canonical homo-
morphism π : G→ G/N . Conversely, the image ϕ(G) of G under a homo-
morphism ϕ : G→ G′ is isomorphic to a quotient of G, namely G/ kerϕ.

Proof. There is nothing to prove in the first statement once it has been
checked that the canonical map π : G → G/N is indeed an epimorphism,
and this was observed in Section 8.2. The second statement is given by the
First Isomorphism Theorem (9.1).

9.4 Second Isomorphism Theorem

Let G be a group and let H and N be subgroups of G with H ⊆ NG(N)
(this latter being the case if N is normal, for instance). By Theorem 6.5,
HN is a subgroup of G. It contains N as a normal subgroup so the quotient
group HN/N is defined. Also, H ∩N is a subgroup of H and it is normal
(which is easily checked, although it is a consequence of the proof below),
so the quotient group H/H ∩N is defined.

Theorem (Second Isomorphism Theorem).

H/H ∩N ∼= HN/N.

Proof. Define ϕ : H → HN/N by ϕ(h) = hN . Then ϕ is a homomorphism
(it is simply the restriction to H of the canonical epimorphism HN →
HN/N).

For h ∈ H we have

h ∈ kerϕ ⇐⇒ ϕ(h) = N ⇐⇒ hN = N ⇐⇒ h ∈ H ∩N,

so kerϕ = H ∩N .
Let x ∈ HN/N . Then x = hnN = hN for some h ∈ H and n ∈ N , and

we have ϕ(h) = hN = x, so ϕ is surjective.
By the First Isomorphism Theorem (9.1),

H/(H ∩N) = H/ kerϕ ∼= imϕ = HN/N,

and the proof is complete.
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9.5 Third Isomorphism Theorem

Let G be a group and let M and N be normal subgroups of G with M ⊇ N .
Then M/N is a normal subgroup of G/N (as is easily checked), so the
quotient group (G/N)/(M/N) is defined.

Theorem (Third Isomorphism Theorem).

(G/N)/(M/N) ∼= G/M.

Proof. Let ψ : G → G/M be the canonical epimorphism. Since N ⊆ M =
kerψ, the Fundamental Homomorphism Theorem (8.7) says that the func-
tion ϕ : G/N → G/M given by ϕ(aN) = ψ(a) = aM is a well-defined
homomorphism. It follows from the indicated formula that ϕ is surjective.

We claim that kerϕ = M/N . Let aN ∈ G/N . We first observe that if
aN ∈M/N , then aN = bN for some b ∈M , implying a = bn ∈M for some
n ∈ N . Using this observation to supply the direction ⇐ of the final step,
we have

aN ∈ kerϕ ⇐⇒ ϕ(aN) = M ⇐⇒ aM = M

⇐⇒ a ∈M ⇐⇒ aN ∈M/N,

so the claim is established.
By the First Isomorphism Theorem (9.1),

(G/N)/(M/N) = (G/N)/ kerϕ ∼= imϕ = G/M,

and the proof is complete.

9.6 Correspondence Theorem

Let ϕ : G→ G′ be an epimorphism. Let

S = {H | kerϕ ⊆ H ≤ G},
S′ = {H ′ |H ′ ≤ G′}.

Theorem (Correspondence Theorem).

(i) The map S → S′ given by H 7→ ϕ(H) is a bijection. Its inverse map
S′ → S is given by H ′ 7→ ϕ−1(H ′).

(ii) For H,K ∈ S, ϕ(H) ⊆ ϕ(K) if and only if H ⊆ K, and in this case
|ϕ(K) : ϕ(H)| = |K : H|.
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(iii) For H,K ∈ S, ϕ(H) / ϕ(K) if and only if H / K, and in this case
ϕ(K)/ϕ(H) ∼= K/H.

Proof. (i) By 8.3, if H is a subgroup of G, then ϕ(H) is a subgroup of G′

so the map is well defined. By this same section, if H ′ is a subgroup of G′,
then ϕ−1(H ′) is a subgroup of G, and this latter subgroup contains kerϕ
since ϕ(k) = e′ ∈ H ′ for all k ∈ kerϕ. Therefore, the indicated inverse map
is also well defined. It suffices to show that both compositions of these two
functions yield the respective identity maps on S and S′.

Let H ∈ S. We need to show that ϕ−1(ϕ(H)) = H. Let g ∈ ϕ−1(ϕ(H)).
Then ϕ(g) ∈ ϕ(H), implying that ϕ(g) = ϕ(h) for some h ∈ H. Therefore,

ϕ(gh−1) = ϕ(g)ϕ(h)−1 = e′

so that gh−1 ∈ kerϕ ⊆ H. It follows that g ∈ H. This gives ϕ−1(ϕ(H)) ⊆
H. The other inclusion is immediate.

Let H ′ ∈ S′. We need to show that ϕ(ϕ−1(H ′)) = H ′. Let h′ ∈ H ′. Since
ϕ is surjective, there exists g ∈ G such that ϕ(g) = h′. But this last equation
says that g ∈ ϕ−1(H ′), so h′ ∈ ϕ(ϕ−1(H ′)). This gives H ′ ⊆ ϕ(ϕ−1(H ′)).
The other inclusion is immediate.

(ii) Let H,K ∈ S. If ϕ(H) ⊆ ϕ(K), then, using (i), we have

H = ϕ−1(ϕ(H)) ⊆ ϕ−1(ϕ(K)) = K,

and the other implication is immediate.
Assume that H ⊆ K, so that ϕ(H) ⊆ ϕ(K). We claim that the map

f : {kH | k ∈ K} → {ϕ(k)ϕ(H) | k ∈ K} given by f(kH) = ϕ(k)ϕ(H) is a
well-defined bijection. For k, k′ ∈ K, we have

kH = k′H ⇒ k−1k′ ∈ H ⇒ ϕ(k)−1ϕ(k′) = ϕ(k−1k′) ∈ ϕ(H)

⇒ ϕ(k)ϕ(H) = ϕ(k′)ϕ(H),

so f is well-defined. Let k, k′ ∈ K and suppose that f(kH) = f(k′H). Then
ϕ(k)ϕ(H) = ϕ(k′)ϕ(H), implying that ϕ(k−1k′) = ϕ(k)−1ϕ(k′) ∈ ϕ(H).
Therefore, k−1k′ ∈ ϕ−1(ϕ(H)) = H, and so kH = k′H. This shows that f
is injective. That f is surjective is immediate, so the claim that f is bijective
is established. We conclude that the domain and the codomain of f have
the same cardinality, that is, |K : H| = |ϕ(K) : ϕ(H)|.

(iii) Let H,K ∈ S. Denote by ϕK the restriction of ϕ to K, so that
ϕK : K → ϕ(K) is a well-defined epimorphism. Assume that ϕ(H) / ϕ(K).
Applying part (i) of this theorem to ϕK and then using Exercise 8–3(a) we
get

H = ϕ−1K (ϕK(H)) = ϕ−1K (ϕ(H)) / K.
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Conversely, if H /K we get ϕ(H) = ϕK(H) / ϕ(K) by Exercise 8–3(b).
Assume that H /K, so that ϕ(H) / ϕ(K). Put

ψ = πϕK : K
ϕK→ ϕ(K)

π→ ϕ(K)/ϕ(H),

where π is the canonical epimorphism, and note that ψ is an epimorphism.
We have

kerψ = ϕ−1K (kerπ) = ϕ−1K (ϕ(H)) = ϕ−1K (ϕK(H)) = H,

the last equality due to part (i) applied to ϕK . By the First Isomorphism
Theorem (9.1)

K/H = K/ kerψ ∼= imψ = ϕ(K)/ϕ(H)

and the proof is complete.

9.7 Quotient is simple iff normal subgroup is maximal

Let G be a group. A maximal normal subgroup of G is a normal sub-
group N of G satisfying

(i) N 6= G,

(ii) If N $ N ′ / G, then N ′ = G.

Let N be a normal subgroup of G.

Theorem. The quotient G/N is simple if and only if N is a maximal normal
subgroup of G.

Proof. Let π : G → G/N be the canonical epimorphism. According to the
Correspondence theorem (9.6), the map N ′ 7→ π(N ′) = N ′/N sets up a
one-to-one correspondence between the normal subgroups of G containing
N and the normal subgroups of G/N .

The quotient G/N is simple if and only if it is nontrivial and its only
normal subgroups are G/N and {N} (which equals N/N). So, by the Cor-
respondence theorem, G/N is simple if and only if N 6= G and the only
normal subgroups of G containing N are G and N , which holds if and only
if N is maximal.
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9.8 Group with operator domain

Let Ω be a set. An Ω-group (or group with operator domain Ω) is a
group G together with a function G×Ω→ G denoted (g, ω) 7→ gω satisfying

(gh)ω = gωhω for each g, h ∈ G, ω ∈ Ω.

Note that any group can be viewed as an Ω-group with Ω = ∅, so the notion
of “Ω-group” generalizes the notion of “group.”

An example of an Ω-group is a vector space V over R (or, more generally,
an R-module where R is a ring). Indeed, V is a group under vector addition,
and if we let Ω = R and define vα = αv (v ∈ V, α ∈ R), then V is an Ω-
group, since

(v + w)α = α(v + w) = αv + αw = vα + wα

(v, w ∈ V , α ∈ R).
Let G be an Ω-group. An Ω-subgroup of G is a subgroup H of G

satisfying hω ∈ H for all h ∈ H, ω ∈ Ω.
Let G′ be another Ω-group. An Ω-homomorphism from G to G′ is

a group homomorphism ϕ : G → G′ satisfying ϕ(gω) = (ϕ(g))ω for each
g ∈ G, ω ∈ Ω.

Note that in the vector space example an Ω-subgroup is a subspace and
an Ω-homomorphism is a linear transformation.

Let N be a normal Ω-subgroup of G (i.e., a normal subgroup that is also
an Ω-subgroup). The quotient group G/N is an Ω-group with the definition
(aN)ω = aωN (a ∈ G, ω ∈ Ω).

The general results proved so far involving the notions of group, sub-
group, and homomorphism remain valid if one replaces these terms with
Ω-group, Ω-subgroup, and Ω-homomorphism, respectively. In particular,
the Fundamental homomorphism theorem, the three Isomorphism theorems,
and the Correspondence theorem are all valid in the Ω-group setting. In par-
ticular, these results apply to vector spaces over R (and, more generally, to
modules over any ring).

9 – Exercises

9–1 In the additive group R3, let

D = {(t, t, t) | t ∈ R} and P = {(u, v,−u) |u, v ∈ R},

both normal subgroups of R3. Use the second isomorphism theorem to prove
that R3/D ∼= P .
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9–2 Let ϕ : G → G′ be a group homomorphism with G′ abelian. Prove
that if H is a subgroup of G with H ⊇ kerϕ, then H is normal.

Hint: Consider the Correspondence theorem (9.6).

9–3 Let n be a positive integer. Prove that

SLn(R) /GLn(R) and GLn(R)/SLn(R) ∼= R×.

(See Exercise 3–8.)

9–4 Let G be a group and let H and K be normal subgroups of G such
that G = HK. Prove that

G/(H ∩K) ∼= (G/H)× (G/K).

9–5 Let G be a group and let H be a subgroup of G. Prove that

NG(H)/CG(H)

is isomorphic to a subgroup of the group Aut(H) ≤ Sym(H) of all automor-
phisms of H. (See Sections 3.6 and 6.4 for notation.)
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10 Composition series

10.1 Definition

Let G be a group. A subnormal series of G is a tuple

(Gi) = (G0, G1, . . . Gr),

where

• G0 = G,

• Gr = {e},

• Gi+1 / Gi for all 0 ≤ i < r.

Thus, a subnormal series of G is a finite descending sequence of subgroups
of G starting at G and ending at {e} with each term normal in the preceding
term.

Let (Gi) = (G0, G1, . . . , Gr) be a subnormal series of G. The factors
of (Gi) are the quotient groups Gi/Gi+1, 0 ≤ i < r (or any list of r groups
isomorphic to these quotient groups). The length of (Gi) is the number of
its nontrivial factors.

If every factor of the subnormal series (Gi) of G is simple (7.4), it is a
composition series.

In view of 9.7, (Gi) is a composition series of G if and only if Gi+1

is a maximal normal subgroup of Gi for each i. A group need not have
a composition series (Z has none for example). However, if G is finite
and nontrivial, then it has a composition series since, for instance, one can
be constructed by starting with G0 = G and recursively choosing Gi+1 to
be a maximal normal subgroup of Gi (this process necessarily ending with
Gr = {e} for some r since the orders of the subgroups strictly decrease).

10.2 Example: Z6

The group Z6 has as composition series (Z6, 〈3〉, {0}). The factors are Z6/〈3〉
and 〈3〉/{0}, which are isomorphic to Z3 and Z2, respectively.

This group also has as composition series (Z6, 〈2〉, {0}). Its factors are
Z6/〈2〉 and 〈2〉/{0}, which are isomorphic to Z2 and Z3, respectively.

For one thing, this example shows that a group can have more than one
composition series. But is also suggests that any two composition series of
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a group have the same factors (except possibly for the order in which they
occur). This is indeed the case as will be shown in Section 10.5.

10.3 Zassenhaus butterfly lemma

Let G be a group and let A1, A2, B1, B2 be subgroups of G with A2 /A1 and
B2 / B1. By 6.5, each of the products

A11 = (A1 ∩B1)A2

A12 = (A1 ∩B2)A2

B11 = (A1 ∩B1)B2

B21 = (A2 ∩B1)B2

is a subgroup of G. Moreover, A12 /A11 and B21 /B11, as is revealed in the
proof of the next result.

Lemma (Zassenhaus butterfly lemma).

A11/A12
∼= B11/B21.

Proof. The lemma is proved by establishing the isomorphisms

A11/A12
∼= (A1 ∩B1)/D ∼= B11/B21,

where D = (A1 ∩B2)(A2 ∩B1).
Since A1 ∩B1 ⊆ NG(A12), the Second Isomorphism Theorem (9.4) gives

A11/A12 = (A1 ∩B1)A12/A12
∼= (A1 ∩B1)/[(A1 ∩B1) ∩A12]

= (A1 ∩B1)/D,

the last equality from the Dedekind law (see Exercise 3–2). The second
isomorphism above is proved similarly.

10.4 Schreier refinement theorem

Let G be a group and let (Gi) be a subnormal series of G. A subnormal
series (Rj) of G is a refinement of (Gi) if for each i we have Gi = Rj(i)
for some j(i) (so (Rj) can be thought of as being obtained from (Gi) by
inserting terms).

Two subnormal series of G are equivalent if there exists a one-to-one
correspondence between their nontrivial factors such that corresponding fac-
tors are isomorphic.

Let (Ai) and (Bi) be two subnormal series of G.
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Theorem (Schreier refinement theorem). There exist refinements of (Ai)
and (Bi), respectively, such that the refinements are equivalent.

Proof. For each i and j (for which the indicated subgroup is defined), put

Aij = (Ai ∩Bj)Ai+1 and Bij = (Ai ∩Bj)Bj+1.

Then Ai0 = Ai and B0j = Bj for each i and j, so (Aij) (ordered lexi-
cographically according to the double index) is a refinement of (Ai) and
(Bij) (ordered reverse lexicographically according to the double index) is a
refinement of (Bj). Moreover, by the lemma of Zassenhaus (10.3),

Aij/Ai,j+1
∼= Bij/Bi+1,j

for each i and j. Therefore, these refinements are equivalent.

10.5 Jordan-Hölder theorem

Let G be a group.
Let (Gi) be a composition series of G and let (Rj) be a refinement of

(Gi). Since Gi+1 is a maximal normal subgroup of Gi for each i (see 10.1),
it must be the case that each term in the series (Rj) equals some term in
the series (Gi). In particular, the nontrivial factors of (Rj) are precisely the
factors of (Gi), so that (Rj) is equivalent to (Gi).

This observation, together with the Schreier refinement theorem (10.4),
gives the following theorem.

Theorem (Jordan-Hölder theorem). Any two composition series of G are
equivalent.

Proof. By the Schreier refinement theorem, any two composition series of
G have equivalent refinements, each of which is equivalent to the series it
refines by the preceding remarks.

Assume that G has a composition series (which is the case if G is finite
and nontrivial, for instance). The composition factors of G are the fac-
tors of any composition series of G. This notion is well-defined due to the
theorem.

For example, the composition factors of Z6 are Z2 and Z3.
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10.6 Example: Fundamental theorem of arithmetic

Let n be a natural number with n ≥ 2.

Theorem (Fundamental theorem of arithmetic). The number n is a product
of prime numbers and these prime numbers are uniquely determined up to
order.

Here is a proof of this well-known theorem using the Jordan-Hölder theo-
rem. The group Zn is finite, so it has a composition series (G0, G1, . . . , Gr).
Each Gi is cyclic (4.4), and a quotient of a cyclic group is cyclic (easy
proof), so each factor Gi/Gi+1 of the series is cyclic and simple and hence
isomorphic to Zpi for some prime number pi (see 7.4). By repeated use of
Lagrange’s theorem we have n = p0p1 · · · pr−1. Finally, given a prime fac-
torization of n, a proof by induction using Exercise 7–5 shows that Zn has
a composition series with composition factors having the prime factors as
orders, so the uniqueness statement follows from the uniqueness statement
in the Jordan-Hölder theorem.

10.7 Classification of finite simple groups

Let G be a nontrivial finite group. According to the Jordan-Hölder theorem,
G determines a unique (up to permutations of terms and isomorphisms)
list of simple groups S1, S2, . . . , Sr, namely, its composition factors. By
Lagrange’s theorem, its order is the product of the orders of these simple
groups:

|G| = |S1||S2| · · · |Sr|.

In the special case G = Zn, these observations yield the Fundamental theo-
rem of arithmetic (10.6) where the orders of the simple groups turn out to
be the prime factors of n.

Therefore, this way of associating to a given finite group a list of simple
groups can be viewed as a generalization of the associating to a given natural
number its list of prime factors. Just as we regard prime numbers as building
blocks of all numbers, we can regard simple groups as building blocks of all
finite groups. Due to the pivotal role finite simple groups play, much effort
has been expended in their determination, and this is now complete:

Theorem (Classification of finite simple groups). A finite simple group is
isomorphic to one of the following:

(i) a cyclic group Zp with p prime,
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(ii) an alternating group An with n ≥ 5,

(iii) a simple group of Lie type,

(iv) a sporadic group.

The cyclic groups Zp with p prime are simple due to Lagrange’s theorem.
They are the only abelian finite simple groups.

The alternating group An is an index two subgroup of the symmetric
group Sn defined in 11.6. Its simplicity for n ≥ 5 is discussed in 14.6.

The simple groups of Lie type are certain groups constructed from ma-
trix groups over finite fields. An example of one is the projective special
linear group PSLn(F ), which is the quotient by its center of the group of
determinant one n× n matrices over the finite field F .

The sporadic groups are 26 simple groups not accounted for among the
infinite families in (i)-(iii). The largest is the Monster. Its order is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053.

10.8 Extension problem

In 10.7 an analogy was drawn between the composition factors of a finite
group and the prime factors of a natural number. The analogy is not per-
fect, for, given a list of prime numbers, there is only one natural number
having those primes as factors, but given a list of finite simple groups, it is
possible to have two nonisomorphic groups both having those simple groups
as composition factors.

Indeed, Z4 is not isomorphic to Z2 ⊕ Z2 since the first is cyclic and the
second is not, but these groups have composition series (Z4, 〈2〉, {0}) and
(Z2 ⊕ Z2, 〈(1, 0)〉, {(0, 0)}), respectively, both of which have factors Z2 and
Z2. Intuitively speaking, Z4 and Z2⊕Z2 are composed of the same building
blocks, but the blocks are not stacked the same way in the one group as in
the other. This example leads one to consider the “extension problem.”

Let N and Q be groups. A group G is an extension of N by Q if it has
a normal subgroup isomorphic to N with corresponding quotient isomorphic
to Q.

Extension Problem. For finite groups N and Q with Q simple, determine
all (isomorphism classes of) extensions of N by Q.

A solution to this problem would allow for a recursive determination of
all finite groups: The groups with one composition factor are known–they
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are the simple groups. Assuming the groups with n composition factors are
known, they can play the role of N in the extension problem and a solution
would yield all groups with n+ 1 composition factors.

The extension problem has not been solved, nor does it appear that a
solution is on the horizon. However, many results involving special cases
have been worked out. We mention one such result.

Assume that N is abelian. It has been shown that there is an abelian
group H2(Q,N) (called a “cohomology group”) having elements in natural
one-to-one correspondence with (equivalence classes of) extensions of N by
Q with N contained in the center. There is always one such extension,
namely G = N ×Q. It corresponds to the identity of H2(Q,N). Taking the
case N = Z2 and Q = Z2, it turns out that H2(Q,N) ∼= Z2 = {0, 1}. The
group Z2 ⊕ Z2 corresponds to 0, while the group Z4 corresponds to 1.

10 – Exercises

10–1 Let G be a group and assume that G has a composition series. Prove
that if H is a normal subgroup of G, then G has a composition series (Gi)
with Gi = H for some i.

10–2 Let G be a nontrivial abelian group. Prove that G has a composition
series if and only if the order of G is finite.

10–3 Let G be a finite group and let N be a normal subgroup of G. Prove
that if N has composition factors S1, . . . , Sm and G/N has composition
factors T1, . . . , Tn, then G has composition factors

S1, . . . , Sm, T1, . . . , Tn.

10–4 Determine the composition factors of the group D8 × Z12. (Com-
pletely support your claims by, for instance, exhibiting a composition series,
or invoking theorems and/or exercises.)
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11 Symmetric group of degree n

11.1 Definition

Let n be a positive integer. Recall (Section 1.7) that Sn denotes the sym-
metric group of degree n, which is the group of all permutations of the
set {1, 2, . . . , n}, with binary operation being function composition (written
using juxtaposition).

An element σ of Sn has a 2× n matrix representation

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

Since each such representation is completely determined by its bottom row
(and different bottom rows correspond to different permutations), the num-
ber of permutations of {1, 2, . . . , n} is simply the number of arrangements
of these numbers. Thus |Sn| = n!.

11.2 Cycle

Let n be a positive integer and let i1, i2, . . . , ir be distinct integers with
1 ≤ ij ≤ n. Let σ be the element of Sn that satisfies

σ(ij) =

{
ij+1 j < r,

i1 j = r,

and σ(k) = k for all k /∈ {i1, i2, . . . , ir}. This permutation is written σ =
(i1, i2, . . . , ir). It is called an r-cycle (or a cycle of length r) and we write
length(σ) = r.

For example, (1, 5, 2, 4) ∈ S5 is a 4-cycle. Using the 2× n matrix repre-
sentation of a permutation, we have

(1, 5, 2, 4) =

(
1 2 3 4 5
5 4 3 1 2

)
.

Note that a cycle is invariant under (unchanged by) any cyclic permutation
of its entries. (A cyclic permutation of a list is the moving of any number
of its elements from the end to the beginning without changing their order.)
For instance:

(1, 5, 2, 4) = (4, 1, 5, 2) = (2, 4, 1, 5) = (5, 2, 4, 1).
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It is easy to check that the inverse of a cycle is obtained by writing the
entries in reverse order. For example,

(1, 5, 2, 4)−1 = (4, 2, 5, 1).

A transposition is a 2-cycle. The transposition (i1, i2) transposes (in-
terchanges) the two numbers i1 and i2 and fixes every other number.

A 1-cycle (a1) is the identity since it fixes a1 as well as every other
number.

11.3 Permutation is product of disjoint cycles

Two cycles (i1, i2, . . . , ir) and (k1, k2, . . . , ks) are disjoint if {i1, i2, . . . , ir}∩
{k1, k2, . . . , ks} = ∅. Since a cycle moves only those numbers appearing,
disjoint cycles commute.

Let

σ =

(
1 2 3 4 5 6 7 8 9
3 7 8 9 5 4 2 1 6

)
∈ S9

We can write σ as a product (meaning composition) of (pairwise) disjoint
cycles as follows:

• Start with 1. We have σ : 1 7→ 3 7→ 8 7→ 1 (back to where we started).
This completes the cycle (1, 3, 8).

• Pick the smallest number not yet appearing, namely, 2. We have σ :
2 7→ 7 7→ 2. This completes the cycle (2, 7), which we compose with
the cycle above to get (1, 3, 8)(2, 7).

• Again, pick the smallest number not yet appearing, namely, 4. We
have σ : 4 7→ 9 7→ 6 7→ 4 giving the cycle (4, 9, 6), so we now have
(1, 3, 8)(2, 7)(4, 9, 6).

• Only 5 remains, and since σ : 5 7→ 5 we get the cycle (5) producing
(1, 3, 8)(2, 7)(4, 9, 6)(5).

The proof in the following theorem formalizes this algorithm and shows
that σ equals the resulting composition of cycles:

σ = (1, 3, 8)(2, 7)(4, 9, 6)

(we usually suppress 1-cycles as we have done here with (5) since a 1-cycle
is the identity and composing with the identity has no effect).

62



Both sides of this equation should have the same effect on each number
1, 2, . . . , 9. Let’s use 7 as a test. Looking at the definition of σ we see that
σ(7) = 2. On the other hand, the composition applied to 7 is:

[(1, 3, 8)(2, 7)(4, 9, 6)] (7) = [(1, 3, 8)(2, 7)] (7) (4, 9, 6) fixes 7
= [(1, 3, 8)](2) (2, 7) sends 7 to 2
= 2 (1, 3, 8) fixes 2,

as desired. (Note that the cycles in the composition were constructed left
to right, but they are applied right to left. Since the cycles are disjoint, the
order of the factors is irrelevant.)

In the statement of the theorem the word “product” has the usual broad
meaning (any number of factors, with the case of a product of one factor
meaning that element itself).

Theorem. Any element of Sn can be written as a product of disjoint cycles.
Moreover, any two such factorizations are the same except possibly for the
order of the factors (provided cycles of length one are omitted).

Proof. Let σ ∈ Sn. Put Fσ = {i |σ(i) = i}, the set of fixed points of σ. We
use reverse induction on |Fσ| to show the existence of a factorization of σ as
a product of disjoint cycles. If |Fσ| = n, then σ is the identity map and can
therefore be written σ = (1), which is a product of disjoint cycles according
to our convention.

Assume that |Fσ| < n. Then there exists i1 such that σ(i1) 6= i1.
Recursively define ij+1 = σ(ij). There is a least positive integer r for
which σ(ir) = ij ∈ {i1, i2, . . . , ir}. If 1 < j ≤ r, then ij−1 is defined
and σ(ij−1) = ij = σ(ir), which, since ij−1 6= ir, violates injectivity of σ.
Therefore, we conclude that σ(ir) = i1.

Let σ1 denote the cycle (i1, i2, . . . , ir) (defined since the ij are distinct
by construction) and put σ′ = σ−11 σ.

We claim that Fσ′ ⊇ Fσ. Let i ∈ Fσ. Then i 6= ij for all j, so that
σ1(i) = i. Therefore, σ′(i) = σ−11 σ(i) = σ−11 (i) = i, showing that i ∈ Fσ′
and establishing the claim.

For each j, σ′(ij) = σ−11 σ(ij) = σ−11 (ij+1) = ij (interpreting the sum j+1
modulo r), so ij ∈ Fσ′ . On the other hand, σ(i1) 6= i1 (by the definition of
i1), so i1 ∈ Fσ′\Fσ. We conclude that |Fσ′ | > |Fσ|. Therefore, the induction
hypothesis applies to σ′ and σ′ = σ2σ3 · · ·σt, a product of disjoint cycles.

Fix 1 ≤ j ≤ r and assume that ij appears in one of the cycles σ2, σ3, . . . ,
σt. Then it appears in precisely one of the cycles and, since disjoint cycles
commute, we may (and do) assume that it appears in σ2. As we have seen,
σ′ fixes ij , so ij = σ′(ij) = σ2(ij). Thus σ2 has length one.
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Therefore, σ = σ1σ
′ = σ1σ2 · · ·σt and, after removing any cycles of

length one in this product (a harmless act, since each such is the identity),
we are left with a product of disjoint cycles.

Next we turn to the uniqueness statement. Let

σ = σ1σ2 · · ·σt and σ = ρ1ρ2 · · · ρs

be two factorizations of σ as a product of disjoint cycles. We argue again
by reverse induction on |Fσ|. If |Fσ| = n, then σ is the identity so that the
cycles σi and ρi each have length one, and the uniqueness statement follows
(in light of the agreement to ignore cycles of length one).

Assume that |Fσ| < n. Then σ(k) 6= k for some k. Now k must appear
in one of the σi and also in one of the ρi. Since disjoint cycles commute, we
may (and do) assume that k appears in σ1 and also in ρ1. For each positive
integer m we have

σm1 (k) = σm(k) = ρm1 (k).

In particular, since the length of σ1 is characterized as the least positive
integer r for which σr1(k) = k, the cycle ρ1 must also have this same length
r and

σ1 = (k, σ1(k), σ21(k), . . . , σr−11 (k)) = (k, ρ1(k), ρ21(k), . . . , ρr−11 (k)) = ρ1.

Put σ′ = σ−11 σ and note that σ′ = ρ−11 σ as well. Then

σ′ = σ2σ3 · · ·σt and σ′ = ρ2ρ3 · · · ρs.

By an argument similar to that given in the first part of the proof, |Fσ′ | >
|Fσ|, so the induction hypothesis applies to σ′ and, after a relabeling to
reflect any rearrangement of factors or deletions of cycles of length one, we
have t = s (with the possibility that this common number is 1, implying no
factors at all) and σi = ρi for all i.

Although it is customary to suppress cycles of length one when expressing
an element of Sn as a product of cycles, there are times when it is convenient
not to do so. A complete factorization of σ ∈ Sn is a factorization
σ = σ1σ2 · · ·σt, where the σi are disjoint cycles and each 1 ≤ k ≤ n appears
in at least one (and hence precisely one) cycle σi.

For example, σ = (1, 3, 8)(2, 7)(4, 9, 6)(5) is a complete factorization of
the permutation σ defined at the first of the section.

It follows from the theorem that every element of Sn has a complete
factorization.
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11.4 Permutation is product of transpositions

Let n be a positive integer. In the statement of the theorem, the case n = 1
is included by allowing the possibility of a product with no factors, which
is interpreted to be the identity. (This is necessary since S1 = {ε} has no
transpositions at all.)

Theorem. Any element of Sn can be written as a product of transpositions.

Proof. By Section 11.2 it suffices to show that every cycle can be written as
a product of transpositions. Let σ = (i1, i2, . . . , ir) be a cycle. We proceed
by induction on r. If r = 1, then σ is the identity, which, according to our
convention, is a product of transpositions with no factors.

Assume that r > 1. We claim that (i1, i2)σ = σ′, where σ′ = (i2, i3, . . . , ir).
We have,

(i1, i2)σ(i1) = i1 = σ′(i1),

(i1, i2)σ(ir) = i2 = σ′(ir),

(i1, i2)σ(ij) = ij+1 = σ′(ij), 1 < j < r,

(i1, i2)σ(k) = k = σ(k), k 6= i1, i2, . . . , ir,

so the claim is established. Now the cycle σ′ has length r − 1, so the in-
duction hypothesis says that it is a product of transpositions. Therefore,
σ = (i1, i2)σ

′ is a product of transpositions as well.

The proof of the theorem provides an algorithm for writing a given el-
ement of Sn as a product of transpositions: write as a product of disjoint
cycles and then write each cycle (i1, i2, . . . , ir) as the product

(i1, i2)(i2, i3)(i3, i4) · · · (ir−1, ir)

of transpositions. For example,(
1 2 3 4 5 6 7 8 9
4 1 3 6 9 2 5 8 7

)
= (1, 4, 6, 2)(5, 9, 7)

= (1, 4)(4, 6)(6, 2)(5, 9)(9, 7).

It is important to note that an element of Sn can be written as a product
of transpositions in more than one way. For instance, if σ = (1, 2, 3), then

σ = (1, 2)(2, 3),

σ = (2, 3)(1, 3),

σ = (1, 3)(2, 3)(1, 2)(1, 3),

σ = (1, 3)(2, 3)(1, 2)(1, 3)(1, 2)(1, 2),
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as is easily checked. However, in any two such factorizations the parity (i.e.,
even or odd) of the number of factors will always be the same (see Section
11.5).

11.5 Even permutation, odd permutation

Let n be a positive integer. An element of Sn is even if it can be written
as a product of an even number of transpositions. An element of Sn is odd
if it can be written as a product of an odd number of transpositions.

By Theorem 11.4 an element of Sn is either even or odd, but possibly both
for all we know at this point. Choosing to apply these terms to permutations
would be a bad idea if a permutation could be both even and odd. However,
this is not the case:

Theorem. An element of Sn is not both even and odd.

Proof. Let σ ∈ Sn. Let σ = σ1σ2 · · ·σt be a complete factorization of σ
(11.2). Define N(σ) =

∑
i(length(σi) − 1) (well defined by the uniqueness

statement of 11.2). Let 1 ≤ a, b ≤ n with a 6= b. Any cycle in which a and
b appear can be written (a, c1, . . . , ch, b, d1, . . . , dk) (after applying a cyclic
permutation to the elements, if necessary). For such a cycle, a routine check
verifies the equation

(a, b)(a, c1, . . . , ch, b, d1, . . . , dk) = (b, d1, . . . , dk)(a, c1, . . . , ch).

Multiplying both sides of this equation by (a, b)−1 = (a, b) gives

(a, b)(b, d1, . . . , dk)(a, c1, . . . , ch) = (a, c1, . . . , ch, b, d1, . . . , dk).

It follows from these equations that

N((a, b)σ) =

{
N(σ)− 1, if a and b appear in the same σi,

N(σ) + 1, otherwise.

Indeed, assuming that a and b both appear in σi for some i, we may
(and do) assume that i = 1 (since disjoint cycles commute) and σ1 =
(a, c1, . . . , ch, b, d1, . . . , dk), so that, writing σ′ = σ2 · · ·σt,

N((a, b)σ) = N((a, b)σ1) +N(σ′)

= k + h+N(σ′)

= N(σ1)− 1 +N(σ′)

= N(σ)− 1,

66



and similarly for the other case. In particular, N((a, b)σ) and N(σ) always
have opposite parities (i.e., if one is even, then the other is odd).

Let σ = τ1τ2 · · · τs be a factorization of σ with each τi a transposition.
Then τsτs−1 · · · τ1σ = ε, so N(τsτs−1 · · · τ1σ) = N(ε) = 0, which is an even
number. By repeated application of the observation above, we find that
N(σ) is even or odd according as s is even or odd. This is to say that the
parity of the number s of factors in our factorization σ = τ1τ2 · · · τs is the
same as the parity of the number N(σ). Since this latter depends only on
σ the proof is complete.

11.6 Alternating group

Let n be an integer greater than 1. Let An be the set of all even permutations
in Sn:

An = {σ ∈ Sn |σ is even}.

Theorem.

(i) An / Sn,

(ii) |Sn : An| = 2,

(iii) |An| = n!/2.

Proof. The function ϕ : Sn → Z2 given by

ϕ(σ) =

{
0, σ even

1, σ odd

is well defined by 11.5, it is an epimorphism (as is easily checked), and its
kernel is An. Since kernels are normal subgroups, this proves (i). By the
first isomorphism theorem,

Sn/An = Sn/ kerϕ ∼= imϕ = Z2.

Therefore, |Sn : An| = |Sn/An| = |Z2| = 2, giving (ii). By Lagrange’s
theorem, |An| = |Sn|/|Sn : An| = n!/2, which gives (iii) and completes the
proof.

An is the alternating group of degree n. We show in 14.6 that this group
is simple if n ≥ 5.
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11.7 Conjugacy classes in the symmetric group

Let n be a positive integer and let σ ∈ Sn. Let σ = σ1σ2 · · ·σt be a complete
factorization of σ (11.2). Assume that the σi are ordered in nonincreasing
order according to length, so that i < j ⇒ length(σi) ≥ length(σj). The
cycle structure of σ is the tuple

[length(σ1), length(σ2), . . . , length(σt)].

For example, the cycle structure of

σ = (1, 4)(2, 3, 8)(5, 9) = (2, 3, 8)(1, 4)(5, 9)(6)(7) ∈ S9

is [3, 2, 2, 1, 1]. For the sake of brevity, exponential notation is often used to
indicate repeated entries, so this cycle structure is also written [3, 22, 12].

A partition of n is a nonincreasing sequence [a1, a2, . . . , at] of positive
integers with

∑
i ai = n. The cycle structure of an element of Sn is an

example of a partition.

Theorem.

(i) Two elements of Sn are conjugate if and only if they have the same
cycle structure.

(ii) There is a one-to-one correspondence between the set of conjugacy
classes of Sn and the set of partitions of n defined by mapping a conju-
gacy class to the cycle structure of one (and hence all) of its elements.

Proof. (i) Let σ and σ′ be two elements of Sn. Assume that σ′ is conjugate
to σ. Then σ′ = σρ for some ρ ∈ Sn. Let σ = σ1σ2 · · ·σt be a factorization
of σ as a product of disjoint cycles. We have

σ′ = σρ = σρ1σ
ρ
2 · · ·σ

ρ
t .

By Exercise 11–2, σρi = ρ−1
σi is a cycle having the same length as σi.

Therefore, σ′ has the same cycle structure as σ.
Now assume that σ and σ′ have the same cycle structure. Let σ =

σ1σ2 · · ·σt be a complete factorization σ with factors in nonincreasing or-
der according to length and write σi = (ai1, ai2, . . . , airi). Then the cycle
structure of σ is [r1, r2, . . . , rt]. Since σ′ has this cycle structure as well,
there is a complete factorization of σ′ of the form σ′ = σ′1σ

′
2 · · ·σ′t, with

σ′i = (a′i1, a
′
i2, . . . , a

′
iri

). The formula ρ(aij) = a′ij defines an element ρ of Sn.
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Using Exercise 11–2 again, we see that σ′ = ρσ = σρ
−1

, so σ′ is conjugate
to σ.

(ii) By part (i) the indicated map is well defined and injective. If a =
[a1, a2, . . . , at] is a partition of n, then σ = σ1σ2 · · ·σt, where σi is the ai-
cycle with jth entry j +

∑i−1
k=1 ak, is an element of Sn with cycle structure

a, so the map is surjective as well.

For example, the group S4 has 5 conjugacy classes since the partitions
of 4 are [14], [2, 12], [2, 2], [3, 1], and [4].

11 – Exercises

11–1 Let σ be an element of Sn (n ∈ N) and let σ = σ1σ2 · · ·σt be a
decomposition of σ as a product of disjoint cycles. Prove that the order of
σ is the least common multiple of the lengths of the cycles σi, 1 ≤ i ≤ t.

11–2 Let ρ be an element of Sn (n ∈ N) and let σ = (i1, i2, . . . , ir) ∈ Sn
be an r-cycle. Prove that ρσ = (ρ(i1), ρ(i2), . . . , ρ(ir)), where ρσ := ρσρ−1.

11–3 Let n be an integer greater than one. Prove that

Sn = 〈(1, 2), (1, 2, . . . , n)〉.

Hint: Exercise 11–2.
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12 Group action

12.1 Definition

Let G be a group. A (left) G-set is a pair (S, · ), where S a set and · is a
function G× S → S, denoted by (g, s) 7→ g · s (or just gs) satisfying

(i) e · s = s for all s ∈ S,

(ii) (gh) · s = g · (h · s) for all g, h ∈ G, s ∈ S.

There is a corresponding notion of a right G-set.
Let (S, · ) be a G-set. We say that G acts on S and call · the action.

When the action is clear from the context we just say S is a G-set.

12.2 Example: Natural action of symmetric group

Let X be a nonempty set. The symmetric group Sym(X) acts on X with
action given by σ · x = σ(x) (σ ∈ Sym(X), x ∈ X). This is the natural
action of Sym(X) on X.

12.3 Example: Left translation

Let G be a group. G acts on itself with action given by g ·x = gx (g, x ∈ G),
where the product on the right is the product of group elements. This action
is left translation.

Let H be a subgroup of G. G acts on the set {aH | a ∈ G} of left cosets
of H with action given by g · aH = (ga)H (g, a ∈ G). This action is also
called left translation.

12.4 Example: Conjugation

Let G be a group. G acts on itself with action given by g ·x = gx (g, x ∈ G),
where gx = gxg−1. This action is conjugation. Conjugation of x by g as
defined in Section 6.1 defines a right action of G on itself: x ·g = xg = g−1xg
(g, x ∈ G). The two exponential notations for conjugation are related by
the formula xg = g−1

x.
G acts on the set {H |H ≤ G} of all subgroups of G with action given

by g ·H = gH (g ∈ G). This action is also called conjugation.
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12.5 Permutation representation

Let G be a group. A permutation representation of G is a homomor-
phism from G to a symmetric group Sym(S) (S, a set). The following the-
orem says that G-sets and permutation representations of G are essentially
the same things.

Theorem.

(i) If S is a G-set, then the map ρ : G→ Sym(S) given by ρ(g)(s) = g · s
is a permutation representation of G.

(ii) If ρ : G → Sym(S) is a permutation representation of G, then S is a
G-set with the action given by g · s = ρ(g)(s) (g ∈ G, s ∈ S).

Proof. We begin with a general observation. Let S be a set and let SS

denote the set of all functions from S to S viewed as a binary structure under
composition of functions. Let ρ : G→ SS and G× S → S, (g, s) 7→ g · s, be
maps with ρ(g)(s) = g · s for all g ∈ G and s ∈ S. For any g, h ∈ G,

ρ(gh) = ρ(g)ρ(h) ⇐⇒ ρ(gh)(s) = [ρ(g)ρ(h)](s) ∀s ∈ S
⇐⇒ ρ(gh)(s) = ρ(g)(ρ(h)(s)) ∀s ∈ S
⇐⇒ (gh) · s = g · (h · s) ∀s ∈ S.

Assume that S is a G-set under the given map (g, s) 7→ g·s. For all s ∈ S,
we have ρ(e)(s) = e · s = s, so ρ(e) is the identity map ε on S. Let g ∈ G.
Using the above observation, we have ρ(g)ρ(g−1) = ρ(gg−1) = ρ(e) = ε and
similarly ρ(g−1)ρ(g) = ε. Therefore, ρ(g) is a bijection and hence an element
of Sym(S). This shows that ρ : G→ Sym(S) is well defined. By the above
observation, ρ is a homomorphism, and hence a permutation representation
of G. This proves (i).

Now assume that the given ρ is a permutation representation. Then, for
all s ∈ S we have e ·s = ρ(e)(s) = ε(s) = s, so the first property of a G-set is
satisfied. By the above observation, the second property is satisfied as well.
This proves (ii).

In (i), ρ is the permutation representation of G afforded by the G-set
S. In (ii), S is the G-set affording the permutation representation ρ.

12.6 Cayley’s Theorem

Theorem (Cayley). Every group is isomorphic to a subgroup of a symmetric
group.
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Proof. Let G be a group. View the set G as a G-set with the action being
left translation and let ρ : G→ Sym(G) be the permutation representation
afforded by this G-set. If g is in the kernel of ρ, then e = ε(e) = ρ(g)(e) =
ge = g. Therefore, the kernel of ρ is trivial, which implies that ρ is injective.
We conclude that G is isomorphic to im ρ, which is a subgroup of Sym(G).

12.7 Orbit

Let G be a group and let S be a G-set. For s and t in S put

s ∼ t ⇐⇒ s = g · t for some g ∈ G.

Theorem.

(i) ∼ is an equivalence relation on S.

(ii) For s ∈ S, we have s̄ = G·s = {g ·s | g ∈ G}, where s̄ is the equivalence
class of s relative to ∼.

(iii) {G · s | s ∈ S} is a partition of S.

Proof. (i) If s ∈ S, then s = e · s, so s ∼ s and ∼ is reflexive. Let s, t ∈ S
and assume that s ∼ t. Then s = g · t for some g ∈ G. We have

t = e · t = (g−1g) · t = g−1 · (g · t) = g−1 · s,

so that t ∼ s. Therefore, ∼ is symmetric. Let s, t, u ∈ S and assume that
s ∼ t and t ∼ u. Then s = g · t and t = h · u for some g, h ∈ G. We have

s = g · (h · u) = (gh) · u,

so that s ∼ u. Therefore, ∼ is transitive. This proves that ∼ is an equiva-
lence relation.

(ii) Let s, t ∈ S. We have

t ∈ s̄ ⇐⇒ t ∼ s ⇐⇒ t = g · s for some g ∈ G ⇐⇒ t ∈ G · s,

and the claim follows.
(iii) This is immediate from (ii) and the fact that given any equivalence

relation on a set, the collection of equivalence classes forms a partition of
the set.

For s ∈ S, the set s̄ = G · s is the orbit of s under the action of G.
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12.8 Example: Orbits of a permutation

Let n be a positive integer and let σ ∈ Sn. Put G = 〈σ〉 and S =
{1, 2, . . . , n}. Then S is a G-set relative to the natural action. Let

σ = (i11, i12, . . . , i1r1)(i21, i22, . . . , i2r2) · · · (it1, it2, . . . , itrt)

be a complete factorization of σ (see 11.2). The orbits in S under the action
of G are the sets

{i11, i12, . . . , i1r1}, {i21, i22, . . . , i2r2}, . . . , {it1, it2, . . . , itrt}.

For example, if σ = (1, 4, 6, 2)(5, 9, 7) ∈ S9, then σ = (1, 4, 6, 2)(5, 9, 7)(3)(8)
is a complete factorization of σ and the orbits are

{1, 4, 6, 2}, {5, 9, 7}, {3}, {8}.

12.9 Stabilizer

Let G be a group and let S be a G-set. For s ∈ S define

Gs = {g ∈ G | g · s = s},

the stabilizer of s.

Theorem.

(i) Gs is a subgroup of G for each s ∈ S.

(ii) |s̄| = |G : Gs| for each s ∈ S.

(iii) If S is finite, then |S| =
∑n

i=1 |G : Gsi |, where s̄1, s̄2, . . . , s̄n are the
distinct orbits in S.

Proof. (i) Let s ∈ S. Since e · s = s, we have e ∈ Gs. Let g, h ∈ Gs. Then
(gh) · s = g · (h · s) = g · s = s, so gh ∈ Gs. Also g−1 · s = g−1 · (g · s) =
(g−1g) · s = e · s = s, so g−1 ∈ Gs. Therefore, Gs is a subgroup of G.

(ii) Let s ∈ S and let C be the set of left cosets of Gs in G. Define
f : C → G · s by f(gGs) = g · s. For g, h ∈ G,

gGs = hGs ⇐⇒ g−1h ∈ Gs ⇐⇒ g−1h · s = s ⇐⇒ g · s = h · s,

so f is well defined and injective. It is immediate that f is surjective.
Therefore, f is bijective, whence |s̄| = |G · s| = |C| = |G : Gs|.

(iii) This is immediate from (ii) and the fact that S is the disjoint union
of the orbits s̄i.
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12.10 Example: Coset is orbit

Let G be a finite group and let H be a subgroup of G. View G as an H-set
relative to left translation. The orbit of a ∈ G is ā = Ha, the right coset of
H determined by a. So the distinct orbits are the distinct right cosets, say,
Ha1, Ha2, . . . ,Han. Note that for each i, the stabilizer Hai is the trivial
subgroup {e}. By Theorem 12.9(iii), we have

|G| =
n∑
i=1

|H : Hai | =
n∑
i=1

|H| = n|H| = |G : H||H|,

which is Lagrange’s Theorem (5.9) in the special case of finite G.

12.11 Class equation

Let G be a finite group. Recall that the center of G is Z(G) = {x ∈ G | gx =
xg for all g ∈ G}. Let x̄1, x̄2, . . . , x̄n be the distinct conjugacy classes of G
not contained in the center.

Theorem (Class equation).

|G| = |Z(G)|+
n∑
i=1

|G : CG(xi)|.

Proof. View the set G as a G-set with the action being conjugation. The
orbit of x ∈ G under this action is G · x = Gx, which is precisely the
conjugacy class x. For each x, g ∈ G,

g ∈ Gx ⇐⇒ g · x = x ⇐⇒ gx = x ⇐⇒ gxg−1 = x

⇐⇒ xg = gx ⇐⇒ g ∈ CG(x),

so that Gx = CG(x). If x ∈ Z(G), then the orbit of x is the singleton set
{x} and Gx = CG(x) = G. Since the orbits in G are {x}, x ∈ Z(G), and x̄i,
1 ≤ i ≤ n, Section 12.9 gives

|G| =
∑

x∈Z(G)

|G : Gx|+
n∑
i=1

|G : Gxi | = |Z(G)|+
n∑
i=1

|G : CG(xi)|,

as claimed.
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12 – Exercises

12–1 Let G be a group of odd order and let g ∈ G. Prove that if g is
conjugate to g−1, then g = e.

Hint: Consider an orbit under the action of conjugation.

12–2 Let X be a set and let n be a positive integer. For σ ∈ Sn and
x = (x1, x2, . . . , xn) ∈ Xn define σx = (xσ−1(1), xσ−1(2), . . . , xσ−1(n)). Prove
that Xn is an Sn-set with this action. (Sn is said to act on Xn by place
permutation.)

12–3 Let G be a group and assume that G has an element that has pre-
cisely one conjugate other than itself. Prove that G is not simple.

12–4 Let G be a group and let S be a G-set. Assume that for each pair
s, t ∈ S there exists g ∈ G such that g · s = t (the action of G on S is said to
be transitive). Prove that the one-point stabilizers form a single conjugacy
class. More precisely, prove that for any s ∈ S, one has Ḡs = {Gt | t ∈ S},
where Ḡs denotes the orbit of Gs under the (left) conjugacy action of G on
the set of its subsets.
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13 p-Group

13.1 Definition

Let p be a prime number. A finite group G is a p-group if its order is a
power of p, that is, if there exists a nonnegative integer n such that |G| = pn.

(There is a more general notion of p-group that does not require the
group to be finite (see Section 13.5) and, since some of the statements about
p-groups made below fail to hold if the group is infinite, we have considered
it prudent to insert the word “finite” in those cases.)

13.2 Fixed points of p-group action

Let p be a prime number, let G be a (finite) p-group, and let S be a finite
G-set. Define

S0 = {s ∈ S | g · s = s for all g ∈ G},

the set of fixed points of S under the action of G.

Theorem. |S0| ≡ |S| mod p.

Proof. By assumption, |G| = pn for some nonnegative integer n. The set
S0 is precisely the union of the singleton orbits of S under the action of
G. Let s̄1, s̄2, . . . , s̄n be the orbits of S not contained in S0. For each i,
|G : Gsi | = |s̄i| > 1 and, since |G : Gsi | is a divisor of |G| = pn, we conclude
that p | |G : Gsi |. By Section 12.9,

|S| = |S0|+
∑
i

|G : Gsi | ≡ |S0| mod p,

and the proof is complete.

13.3 Center of nontrivial p-group is nontrivial

Let p be a prime number and let G be a (finite) p-group. Recall that Z(G)
denotes the center of G.

Theorem. If H is a nontrivial normal subgroup of G, then H ∩ Z(G) is
nontrivial. In particular, if G is nontrivial, then Z(G) is nontrivial.
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Proof. Let H be a nontrivial normal subgroup of G. By Lagrange’s theorem
and the fact that G is a p-group, we have |H| = pn for some positive integer
n. Now G acts on S = H by conjugation and, in the notation of Section
13.2, S0 = H ∩ Z(G). By the theorem of that section,

|H ∩ Z(G)| = |S0| ≡ |S| = |H| ≡ 0 mod p,

so H ∩ Z(G) has at least p elements and is therefore nontrivial. Putting
H = G gives the second statement.

The second statement also follows directly from the class equation (12.11).

13.4 Cauchy’s theorem

Let G be a finite group and let p be a prime number.

Theorem (Cauchy). If p divides the order of G, then G has an element of
order p.

Proof. (This proof is due to J. H. McKay.) Assume that p divides the order
of G. By Exercise 12–2, the symmetric group Sp acts on the set Gp by
place permutation and hence so does the subgroup H = 〈σ〉 of Sp, where
σ = (1, 2, . . . , p).

We claim that the subset

S = {(a1, a2, . . . , ap) ∈ Gp | a1a2 · · · ap = e}

of Gp is closed under the action of H. If a = (a1, a2, . . . , ap) ∈ S, then

apa1a2 · · · ap−1 = ap(a1a2 · · · ap−1ap)a−1p = apea
−1
p = e,

so σa = (aσ−1(1), . . . , aσ−1(p)) = (ap, a1, a2, . . . , ap−1) ∈ S. Since H is gener-
ated by σ, the claim follows and S is an H-set.

The tuple (a1, a2, . . . , ap) is in S if and only if ap = (a1a2 · · · ap−1)−1,
so the map S → Gp−1 given by (a1, a2, . . . , ap) 7→ (a1, a2, . . . , ap−1) is a
bijection.

Applying Section 13.2 to the H-set S (valid since |H| = p), we get

|S0| ≡ |S| = |G|p−1 ≡ 0 mod p.

Now S0 = {(x, x, . . . , x) ∈ Gp |xp = e}. Since this set contains (e, e, . . . , e),
it is nonempty, and it therefore has at least p elements by the above con-
gruence. In particular, S0 contains some tuple (x, x, . . . , x) with a 6= e, and
x is the desired element of order p.
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Recall that Lagrange’s theorem says that if H is a subgroup of G, then
its order divides the order of G. The (full) converse of Lagrange’s theorem
would read “If the natural number n divides the order of G, then G has a
subgroup of order n.” This statement does not hold in general. However,
according to Cauchy’s theorem, if n is prime, then the statement is true
(since the element of order n guaranteed by the theorem generates a sub-
group of order n). Because of this, Cauchy’s theorem can be viewed as a
partial converse to Lagrange’s theorem.

13.5 Element characterization of p-group

Let G be a finite group and let p be a prime number. To say an element g
of G has order a power of p is to say that there exists a nonnegative integer
n such that o(g) = pn.

Theorem. The group G is a p-group if and only if every element of G has
order a power of p.

Proof. Assume that G is a p-group so that |G| = pn for some nonnega-
tive integer n. Let g ∈ G. By a corollary of Lagrange’s theorem (5.10),
o(g) | |G| = pn, so g has order a power of p.

Assume that every element of G has order a power of p. Let q be an
arbitrary prime divisor of |G|. By Cauchy’s theorem (13.4), G has an ele-
ment of order q. But, by our assumption, this order must be a power of p.
Therefore, q = p. It follows that |G| is a power of p.

In the literature a (not necessarily finite) group is called a p-group if each
of its elements has order a power of p. According to the present theorem, this
is in agreement with our definition of p-group in the case where the group
is finite. It should be emphasized that several properties of finite p-groups,
including Theorems 13.3 and 13.6, fail to hold for infinite p-groups.

13.6 Normalizer of p-subgroup

Let G be a finite group, let p be a prime number, and let H be a p-subgroup
of G (meaning, H is a subgroup of G and H is a p-group).

Theorem.

(i) |NG(H) : H| ≡ |G : H| mod p.

(ii) If p divides |G : H|, then NG(H) 6= H.
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(iii) If G is a p-group and H 6= G, then NG(H) 6= H.

There is an argument in the proof that we will need in the next section
as well, so we separate it out in the form of a lemma (and state it in general
enough terms to handle both applications). In the statement, S0 is as defined
in Section 13.2. The proof is Exercise 13–4.

Lemma. Let G be a group and let H and K be subgroups of G. Let S =
{gK | g ∈ G}, the set of all left cosets of K in G. Regard S as an H-set with
the action being left translation: h · gK = hgK (h ∈ H, gK ∈ S). Then
S0 = {gK | gK ⊇ H}.

Now we prove the theorem.

Proof. (i) View the set S = {gH | g ∈ G} of all left cosets of H in G as an
H-set by left translation. By the above lemma (with K = H), we have

S0 = {gH ∈ S | gH ⊇ H} = {gH ∈ S | g ∈ NG(H)} = NG(H)/H,

where S0 is as in Section 13.2. By that same section,

|NG(H) : H| = |NG(H)/H| = |S0| ≡ |S| = |G : H| mod p,

as claimed.
(ii) Assume that p divides |G : H|. By part (i), p divides |NG(H) : H|.

Since |NG(H) : H| is not zero, it must be at least p. Therefore, NG(H) 6= H.
(iii) Assume that G is a p-group and H 6= G. By Lagrange’s theorem,

|G : H| is a divisor of |G| and is therefore a power of p. Since H 6= G,
this power of p is not p0. Hence, p divides |G : H| and part (ii) gives
NG(H) 6= H.

13 – Exercises

13–1 Prove that a group of order p2, with p prime, is abelian.

Hint: Exercise 7–2.

13–2 Let G be a nontrivial finite group and let p be the smallest prime
divisor of the order of G. Prove that if H is a subgroup of G of index p,
then H is normal.

Hint: Assume otherwise and let G and H be a counterexample with |G| as
small as possible. Since H is not normal, it has a conjugate K with K 6= H.
Use Exercise 5–1 to prove that |K : K ∩ H| = p and |H : H ∩ K| = p.
Conclude that H ∩K /G and |G : H ∩K| = p2 and derive a contradiction.
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13–3 Use the proof of Cauchy’s theorem (13.4) to establish Fermat’s (lit-
tle) theorem: If p is a prime number, then np ≡ n (mod p) for every integer
n.

Hint: First assume that p does not divide n and prove that np−1 ≡ 1
(mod p) by letting G be Zn (or indeed any group of order n) in the proof of
Cauchy’s theorem.

13–4 Let G be a group and let H and K be subgroups of G. Let S =
{gK | g ∈ G}, the set of all left cosets of K in G. Regard S as an H-set with
the action being left translation: h · gK = hgK (h ∈ H, gK ∈ S). Prove
that S0 = {gK ∈ S | gK ⊇ H}, where S0 is as defined in Section 13.2.
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14 Sylow theorems

14.1 Definition

Let G be a finite group and let p be a prime number. A Sylow p-subgroup
of G is a subgroup of G of order pn, where pn is the greatest power of p that
divides the order of G.

• Let G = Z12. Then |G| = 22 · 3, so

〈3〉 = {0, 3, 6, 9} is a Sylow 2-subgroup,

〈4〉 = {0, 4, 8} is a Sylow 3-subgroup,

and {0} is a Sylow p-subgroup if p 6= 2, 3.

By Lagrange’s theorem, a Sylow p-subgroup ofG is necessarily a maximal
p-subgroup of G (meaning, not properly contained in another p-subgroup of
G).

Denote by Sylp(G) the set of all Sylow p-subgroups of G. Although it is
not immediate that Sylp(G) is nonempty, this is in fact the case, as is shown
in Section 14.2.

14.2 Sylow existence theorem

Let G be a finite group and let p be a prime number. Let pn be the greatest
power of p that divides the order of G. Then |G| = pnm for some m ∈ N
with p - m.

Theorem (Sylow existence theorem). G has a Sylow p-subgroup. In fact,
for each 0 ≤ i ≤ n, there exists a subgroup of G of order pi, and each
subgroup of order pi−1 is normal in some subgroup of order pi.

Proof. The case i = n of the second statement shows that G has a Sylow
p-subgroup, so it suffices to prove the second statement, and this we do by
induction on i. If i = 0, then {e} is a subgroup of order pi, and there is no
subgroup of order pi−1, so the second part is vacuously true.

Let 0 < i ≤ n. By the induction hypothesis, G has a subgroup of order
pi−1. Let H be an arbitrary such subgroup. We have H / NG(H) and

|NG(H)/H| = |NG(H) : H| ≡ |G : H| = pn−i+1m ≡ 0 mod p,
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by Section 13.6. Therefore, by Cauchy’s theorem (13.4), the groupNG(H)/H
contains an element of order p and hence a subgroup A of order p.

Put H1 = π−1(A), where π : NG(H) → NG(H)/H is the canonical
epimorphism. Then H1 is a subgroup of NG(H) (and hence a subgroup of
G) and it contains H. Since H is normal in NG(H) it is normal in H1 as
well. Moreover, H1/H ∼= A by the Correspondence theorem (9.6), so

|H1| = |H1 : H||H| = p · pi−1 = pi,

and the proof is complete.

14.3 Sylow conjugacy theorem

Let G be a finite group and let p be a prime number. G acts on the set of
its subsets by conjugation:

g · S = gS (g ∈ G,S ⊆ G).

Let P ∈ Sylp(G). Denote by P̄ the orbit of P with respect to this action, so
that P̄ = {gP | g ∈ G}.

Theorem (Sylow conjugacy theorem).

(i) If H is a p-subgroup of G, then gP ⊇ H for some g ∈ G.

(ii) P̄ = Sylp(G).

Proof. (i) Let H be a p-subgroup of G. Let S = {gP | g ∈ G}, the set of
all left cosets of P in G. This set is an H-set with the action being left
translation. By Lemma 13.6, (with K = P ), we have S0 = {gP ∈ S | gP ⊇
H}, where S0 is as in Section 13.2. By that same section, |S0| ≡ |S| 6≡ 0
mod p, so S0 is nonempty. Hence, there exists g ∈ G such that gP ⊇ H.

(ii) Every conjugate of P has the same order as P and is therefore a
Sylow p-subgroup of G. This gives the inclusion P̄ ⊆ Sylp(G).

IfQ ∈ Sylp(G), then part (i) withH = Q gives g ∈ G with gP ⊇ Q. Since
both of these sets have the same cardinality, we get Q = gP ∈ P̄ . Therefore,
Sylp(G) ⊆ P̄ . With the earlier inclusion we get the desired equality.

Part (ii) of the theorem says that a conjugate of a Sylow p-subgroup is
a Sylow p-subgroup and that any Sylow p-subgroup is conjugate to every
other Sylow p-subgroup.

Since a conjugate of a Sylow p-subgroup is a Sylow p-subgroup, part (i)
implies that every p-subgroup of G is contained in a Sylow p-subgroup.

If there is only one Sylow p-subgroup P , then P̄ = Sylp(G) = {P}
implying that P is normal.
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14.4 Sylow number theorem

Let G be a finite group and let p be a prime number. Let pn be the greatest
power of p that divides the order of G so that |G| = pnm with p - m. The
factor pn is the p-part of |G| and the factor m is the p′-part of |G|.

The following theorem says that the number of Sylow p-subgroups of G
is a divisor of the p′-part of |G| and that it is congruent to one modulo p.

Theorem (Sylow number theorem).

(i) | Sylp(G)| divides |G|/pn.

(ii) | Sylp(G)| ≡ 1 mod p.

Proof. (i) According to the Sylow conjugacy theorem (14.3) the set Sylp(G)
of Sylow p-subgroups is an orbit, say Sylp(G) = P̄ , relative to the action of
G on its subsets by conjugation. The stabilizer GP of P contains P , so

|Sylp(G)| = |P̄ | = |G : GP | =
|G : P |
|GP : P |

| |G : P | = |G|/pn,

as claimed.
(ii) Retaining the notation of the last paragraph, view S = P̄ as a P -set

by restricting the action.
We claim that S0 = {P}, where S0 is as in Section 13.2. Since a · P =

aP = P for all a ∈ P , we have {P} ⊆ S0. Let Q ∈ S0. We have aQ = a ·Q =
Q for all a ∈ P , so P ⊆ NG(Q). As a consequence of Lagrange’s theorem, pn

is the greatest power of p that divides the order of NG(Q), and, since P and
Q both have order pn, they are both Sylow p-subgroups of NG(Q). By the
Sylow conjugacy theorem (14.3) Q = gQ = P ∈ {P} for some g ∈ NG(Q).
Therefore, S0 ⊆ {P} and the claim is established.

By Section 13.2,

| Sylp(G)| = |P̄ | = |S| ≡ |S0| = |{P}| = 1 mod p,

as claimed.

14.5 Example: Group of order 28 not simple

Let G be a group of order 28. By Theorem 14.4(i), the number | Syl7(G)| of
Sylow 7-subgroups of G divides |G|/7 = 4 and is therefore 1, 2, or 4. But
by (ii) of the same theorem, this number is also congruent to 1 modulo 7
eliminating the possibilities 2 and 4. Therefore, G has exactly one Sylow
7-subgroup. This subgroup is normal by Section 14.3, and it is nontrivial
and proper since its order is 7. Therefore, G is not simple.
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14.6 Alternating group is simple

The proof we give here of the simplicity of the alternating group relies heavily
on the theory of group actions and on Sylow theory; it provides a nice
illustration of the power of these theories.

Theorem. The alternating group An is simple for n ≥ 5.

Proof. The proof is by induction on n ≥ 5. Put G = An and first assume
that n = 5. Let N be a nontrivial normal subgroup of G. We need to show
that N = G.

We first argue that |N | is divisible by either 3 or 5. Suppose otherwise.
Then, since |G| = 5!/2 = 60 = 22 · 3 · 5, it follows from Lagrange’s theorem
that |N | is either 2 or 4.

Suppose that |N | = 2. Then N = {ε, σ} with σ an element of order 2.
The cycle structure of σ is [22, 1], so σ fixes some s ∈ {1, 2, 3, 4, 5} =: S,
whence N ⊆ Gs, where Gs is the stabilizer of s relative to the natural action
of G on S. Since N is normal, it is contained in each conjugate of Gs and
therefore in each one-point stabilizer Gt (t ∈ S) by Exercise 12–4. (This
exercise applies since G contains the element (1, 2, 3, 4, 5) and hence each
power of this element so the action of G on S is transitive.) But this implies
that σ fixes each element of S, so that σ = ε, a contradiction.

Therefore, |N | = 4 and N is a Sylow 2-subgroup of G. Since N is normal,
it contains every 2-subgroup of G (see 14.3) and hence every element with
cycle structure [22, 1]. There are more than 4 such elements (in fact, 15
such), so this is a contradiction.

This establishes the claim that |N | is divisible by either 3 or 5. Suppose
that |N | is divisible by 3. Then N contains a Sylow 3-subgroup of G. By
the Sylow conjugacy theorem (14.3), N contains every Sylow 3-subgroup of
G and hence every 3-cycle, of which there are 20. Now N also contains the
identity, so its order is at least 21. Since the order of N divides the order
of G, this forces |N | to be either 30 or 60. In either case, |N | is divisible by
5. Thus, N contains a Sylow 5-subgroup of G and hence every 5-cycle, of
which there are 24. We conclude that |N | = 60, so that N = G as desired.
The case |N | divisible by 5 is handled similarly.

Now assume that n > 5 and let N be a nontrivial normal subgroup
of G. There exists σ ∈ N with σ 6= ε. By relabeling the elements of
S = {1, 2, . . . , n} if necessary we may (and do) assume that the complete fac-
torization of σ begins (1, 2)(3, 4) · · · or (1, 2, 3, . . .) · · ·. Put ρ = (3, 5, 6) ∈ G.
Using Exercise 11–2, we see that ρσ equals (1, 2)(5, 4) · · · or (1, 2, 5, . . .) · · ·,
respectively. In either case, ρσ 6= σ and σ−1 · ρσ ∈ N fixes the element 1.
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By the preceding paragraph, N ∩ G1 6= {ε}. Now G1 is isomorphic
to An−1, which is simple by the induction hypothesis. Since N ∩ G1 is
a nontrivial normal subgroup of G1, it follows that N contains G1 and
hence every conjugate of G1. By Exercise 12–4, N contains every one-point
stabilizer Gs (s ∈ S). (The exercise applies since An contains (1, 2, . . . , n) if
n is odd and both (1, 2, . . . , n−1) and (2, 3, . . . , n) if n is even.) The product
of any two transpositions moves at most four elements and hence lies in Gs
for some s. Since the set of all such products, a subset of N , generates G,
we conclude that N = G. This completes the proof.

14 – Exercises

14–1 Let G be a group, let H be a finite normal subgroup of G, let p
be a prime number, and let P be a Sylow p-subgroup of H. Prove that
G = HNG(P ).

Hint: Let g ∈ G. Consider gP in light of the Sylow conjugacy theorem
(14.3).

14–2 Let P be a Sylow 2-subgroup of the symmetric group S6. Prove that
P ∼= D8 × Z2.

Hint: {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4} ∪ {5, 6}.

14–3 Let G be a finite group, let p be a prime number, and let P be a
Sylow p-subgroup of G. Prove that NG(NG(P )) = NG(P ).

14–4 Prove that a group of order 12 is not simple.

14–5 Let G be a simple group of order 168. Find the number of elements
of G that have order 7.
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15 Category

15.1 Definition

A category C consists of the following:

• a class obj(C) of objects;

• a class mor(C) of morphisms;

• two functions s, t : mor(C)→ obj(C), such that for every pair (A,B)
of objects, the class mor(A,B) of all morphisms f with source s(f)
equal to A and target t(f) equal to B is a set (for such an f we write

f : A→ B or A
f→ B and say f is a morphism from A to B);

• a function mor(A,B) × mor(B,C) → mor(A,C) for each triple
(A,B,C) of objects, denoted by (f, g) 7→ g ◦ f , the composition
of f and g;

satisfying two axioms:

(i) if A
f→ B

g→ C
h→ D are morphisms, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

(ii) for each object A there exists a morphism 1A : A → A such that for
any morphisms f : A → B and g : B → A we have f ◦ 1A = f and
1A ◦ g = g.

Part (i) is the associative property of morphisms. A morphism 1A as in
(ii) is unique (same proof as that for uniqueness of group identity). It is the
identity morphism of the object A.

15.2 Examples

• Set denotes the category of sets. The object class is the class of all sets.
The morphisms are functions (maps) between sets and composition
of morphisms is usual function composition. The identity morphism
of an object is the identity function on that set which sends each
element to itself. (In the remaining examples, composition and identity
morphisms are as defined here unless stated otherwise.)

• Grp denotes the category of groups. The object class is the class of
all groups. The morphisms are homomorphisms between groups.
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• Ab denotes the category of abelian groups. The object class is the class
of all abelian groups. The morphisms are homomorphisms between
abelian groups.

• VecF denotes the category of vector spaces over the field F (for ex-
ample, F = R). The object class is the class of all vector spaces over
F . The morphisms are linear transformations between vector spaces.

• Top denotes the category of topological spaces. The object class is the
class of all topological spaces. The morphisms are continuous maps
between spaces.

• Ω-Grp denotes the category of Ω-groups with Ω a set. The object class
is the class of all Ω-groups. The morphisms are Ω-homomorphisms
between Ω-groups.

• G-Set denotes the category of G-sets with G a group. The object
class is the class of all G-sets. The morphisms are G-maps between
G-sets. (A G-map from a G-set S to a G-set T is a function f : S → T
satisfying f(g · s) = g · f(s) for all g ∈ G, s ∈ S.)

• PO(S) denotes the category associated with the partially ordered set
S (S has an order � that is reflexive, transitive and antisymmetric,
this last term meaning s � t, t � s ⇒ s = t). The object class is the
set of elements of S (so obj(PO(S)) = S). For objects s and t

mor(s, t) =

{
{s � t} if s � t,
∅ if s � t,

where {s � t} is interpreted as a singleton set with the indicated
string of characters as its sole element. For morphisms f = s � t and
g = t � u the composition g ◦ f is s � u (well-defined by transitivity
of �). The identity morphism of the object s is s � s (well-defined
by reflexivity of �). (Note that antisymmetry is not required for this
construction.)

• C(G) denotes the category associated with the group G. The object
class is a singleton set {·}. The morphisms are the elements of the
group G (so mor(C(G)) = mor( · , ·) = G ). For morphisms g, h : · → ·
the composition h ◦ g is the product hg of the group elements. The
identity morphism (for the sole object · ) is the identity element e of
the group G. (Note that the existence of inverses in the group is not
required for this construction.)
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15.3 Equivalence

Let ϕ : G→ G′ be a group homomorphism, that is, a morphism in the cat-
egory Grp. A check to see whether ϕ is an isomorphism requires–using the
current definition (8.1)–an inspection of group elements to see whether ϕ is
bijective (i.e., injective and surjective). This makes the definition unsuit-
able for the category setting since in Grp one has available only objects and
morphisms. The following characterization of group isomorphism remedies
this problem since it uses only category-theoretic notions. It also provides
a model for an appropriate generalization of isomorphism to an arbitrary
category.

Theorem. The homomorphism ϕ : G → G′ is an isomorphism if and only
if there exists a homomorphism ψ : G′ → G such that ψ ◦ ϕ = 1G and
ϕ ◦ ψ = 1G′.

Proof. Assume that ϕ is an isomorphism. Define ψ : G′ → G by ψ(g′) = g,
where g ∈ G satisfies ϕ(g) = g′. (Since ϕ is surjective, there exists at least
one such g; since ϕ is injective, there exists at most one such g. Therefore,
ψ is well defined.) It is immediate from the definition of ψ that ψ ◦ ϕ = 1G
and ϕ ◦ ψ = 1G′ . For g′, h′ ∈ G′ we have

ϕ(ψ(g′h′)) = g′h′ = ϕ(ψ(g′))ϕ(ψ(h′)) = ϕ(ψ(g′)ψ(h′)),

and, since ϕ is injective, we get ψ(g′h′) = ψ(g′)ψ(h′), implying that ψ is a
homomorphism.

Now assume that there exists a homomorphism ψ : G′ → G such that
ψ ◦ ϕ = 1G and ϕ ◦ ψ = 1G′ . If ϕ(g) = ϕ(h) (g, h ∈ G), then

g = 1G(g) = ψ(ϕ(g)) = ψ(ϕ(h)) = 1G(h) = h,

implying that ϕ is injective. If g′ ∈ G′, then ψ(g′) ∈ G and ϕ(ψ(g′)) =
1G′(g

′) = g′, so ϕ is surjective as well. Therefore ϕ is an isomorphism. This
completes the proof.

Let C be a category. A morphism f : A→ B in C is an equivalence if
there exists a morphism g : B → A such that g ◦ f = 1A and f ◦ g = 1B. In
this case, such a g is an inverse of f .

Two objects A and B of a category are equivalent, written A ∼= B, if
there exists an equivalence from one to the other. The property of being
equivalent is (not surprisingly) an equivalence relation on the object class
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of the category and each cell of the corresponding partition consists of ob-
jects that are identical to each other in regard to how they relate through
morphisms to other objects in the category.

In the category Set, an equivalence is the same as a bijection. In the
categories Grp, VecF , Ω-Grp, and G-Set, an equivalence is the same as a
bijective morphism (called an isomorphism in each case). In Top, an equiv-
alence is a homeomorphism, which is not the same as a bijective morphism
(e.g., the identity function R→ R is bijective and continuous if the first R
has the discrete topology and the second has the usual topology, but it is not
a homeomorphism). The equivalences in PO(S) are precisely the identity
morphisms s � s (due to antisymmetry) and in C(G) every morphism is an
equivalence.

15.4 Motivation for definition of product

If category theory is to be of use in the study of groups there needs to
be a way to identify standard constructions by just looking at objects and
morphisms. For instance, given two groups, G1 and G2, we seek a way of
singling out among all of the objects of Grp the one we called the direct
product P of G1 and G2 (i.e., P = G1 ×G2) by just looking at how objects
and morphisms relate to G1 and G2.

The first thing we note is that there are two very natural homomorphisms
π1 : P → G1 and π2 : P → G2 (namely, the ones given by π1((g1, g2)) = g1
and π2((g1, g2)) = g2). Next, we note that if G is any group that also admits
homomorphisms fi : G → Gi (i = 1, 2), then there exists one and only one
way to define a homomorphism f : G → P such that πi ◦ f = fi (i = 1, 2).
(Suppose such an f does exist. Let g ∈ G and write f(g) = (g1, g2). Then

g1 = π1((g1, g2)) = π1(f(g)) = (π1 ◦ f)(g) = f1(g),

and similarly g2 = f2(g), so f is forced to satisfy f(g) = (f1(g), f2(g)). One
easily checks that f so defined is indeed a homomorphism.)

So we have identified features of the direct product that can be expressed
entirely in terms of morphisms and objects. It turns out that these features
uniquely determine P (up to isomorphism) as we will see once we generalize
what we have so far to an arbitrary category and an arbitrary family of
objects.

15.5 Product

Let C be a category and let {Ai}i∈I be a family of objects of C. A product
of the family is a pair (P, {πi}), where P is an object and πi : P → Ai, i ∈ I,
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are morphisms having the property that if A is any object and fi : A→ Ai,
i ∈ I, are any morphisms, then there exists a unique morphism f : A → P
such that πi ◦ f = fi for all i ∈ I.

Products are unique up to equivalence in the following strong sense.

Theorem. Let (P, {πi}) and (P ′, {π′i}) be products of the family {Ai}i∈I .
There exists a unique equivalence f : P → P ′ such that π′i ◦ f = πi for all i.
In particular, P ∼= P ′.

Proof. Since (P, {πi}) is a product of the family, putting (A, {fi}) = (P ′, {π′i})
in the definition, we get a unique morphism g : P ′ → P such that πi ◦g = π′i
for all i. Similarly, since (P ′, {π′i}) is a product of the family, putting
(A, {fi}) = (P, {πi}) in the definition, we get a unique morphism f : P → P ′

such that π′i◦f = πi for all i. Combining, we find that g◦f : P → P satisfies

πi ◦ (g ◦ f) = (πi ◦ g) ◦ f = π′i ◦ f = πi

for all i. But also 1P : P → P satisfies πi ◦ 1P = πi for all i. Using the
uniqueness statement in the definition of product, this time with (P, {πi})
as the product and (A, {fi}) = (P, {πi}), we conclude that g ◦ f = 1P .

A similar argument yields f ◦ g = 1P ′ . Thus f is an equivalence and
P ∼= P ′. The uniqueness claim follows from the fact that f : P → P ′ is the
unique morphism satisfying π′i ◦ f = πi for all i.

Warning: The theorem says only that if two products exist, then they must
be equivalent; it does not address the issue of existence. In fact, there are
categories and families of objects for which no product exists. For instance,
if S = {s, t} and one defines a relation � on S by declaring only s � s and
t � t, then the family {s, t} in the category PO(S) has no product (s cannot
be the object part of a product since there is no morphism s → t to play
the role of π2, and similarly for t). There are less trivial examples as well.

If a product of the family {Ai}i∈I exists, its object part (or rather the
equivalence class of its object part) is denoted

d
i∈I Ai (or A1uA2u· · ·uAn

if I = {1, 2, . . . , n}).
In the categories Set, VecF , Ω-Grp, G-Set, and Top, a product of two

objects is obtained, much as we did for Grp, by forming their Cartesian
product (endowed with the relevant structure in a natural way) and using
for {πi} the maps defined above. In 16.1, by generalizing the construction
of a direct product of two groups, it is shown that a product exists for any
family of objects in the category Grp.
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15.6 Coproduct

A nice thing about the category point of view is that every construction
involving morphisms, which we think of as arrows, can be dualized simply
by reversing the direction of the arrows. If one construction is useful, then
one expects its dual construction to be useful as well.

The dual of a product is called a “coproduct.” (This follows the custom
in the naming of dual constructions of prefixing co- to the name of the
original construction.)

Let C be a category and let {Ai}i∈I be a family of objects of C. A
coproduct of the family is a pair (C, {ιi}), where C is an object and ιi :
Ai → C, i ∈ I, are morphisms having the property that if A is any object
and fi : Ai → A, i ∈ I, are any morphisms, then there exists a unique
morphism f : C → A such that f ◦ ιi = fi for all i ∈ I.

One obtains a proof of the uniqueness of a coproduct by “turning the
arrows around” in the proof of the corresponding theorem about products.

Theorem. Let (C, {ιi}) and (C ′, {ι′i}) be coproducts of the family {Ai}i∈I .
There exists a unique equivalence f : C → C ′ such that f ◦ ιi = fi for all i.
In particular, C ∼= C ′.

If a coproduct of the family {Ai}i∈I exists, its object part (or rather the
equivalence class of its object part) is denoted

⊔
i∈I Ai (or A1tA2t· · ·tAn

if I = {1, 2, . . . , n}).
In the categories Set, G-Set, and Top, a coproduct of two objects is

obtained by forming their disjoint union (see 15.7), with the maps ι1 and
ι2 taken to be the inclusion maps. In VecF and Ab the direct product
(together with the natural injection maps) is a coproduct of two objects; in
general the direct sum is a coproduct of a family of objects (see 16.2).

In the category Grp (and similarly for Ω-Grp), a coproduct of two
objects G1 and G2 exists and is called their free product, denoted G1 ∗G2.
Here is a rough description of this group. First, it is assumed that the sets
G1 and G2 are disjoint (which can be arranged for by a simple renaming of
elements if necessary). As a set, G1 ∗ G2 consists of all “reduced words,”
which are formal strings x1x2 · · ·xn (n ≥ 0, xi ∈ G1 ∪ G2) where no factor
is an identity and no adjacent factors lie in the same group. The product of
two reduced words is defined to be juxtaposition followed by reduction: if
the factors on the joined ends lie in the same group, they are multiplied; if
that product is the identity, then it is removed; if this leaves adjacent factors
in the same group then they are multiplied; if that product is the identity,
then it is removed; this process is repeated until a reduced word is obtained.
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For i ∈ {1, 2} the map ιi : Gi → G1 ∗ G2 sends an element of Gi to itself
regarded as a word with a single factor.

15.7 Example: Coproduct of sets is disjoint union

Let S1 and S2 be disjoint sets. Put C = S1∪S2 and define maps ι1 : S1 → C
and ι2 : S2 → C by ι1(s1) = s1 and ι2(s2) = s2 (the inclusion maps). We
claim that (C, {ιi}) is a coproduct of the family {S1, S2} in the category Set.
Let A be a set and let fi : Si → A (i = 1, 2) be maps. Define f : C → A by

f(c) =

{
f1(c) if c ∈ S1,
f2(c) if c ∈ S2.

Then for si in Si we have

(f ◦ ιi)(si) = f(ιi(si)) = f(si) = fi(si),

so f ◦ ιi = fi (i = 1, 2). Also, f as defined is easily seen to be the unique
map satisfying these two identities. Therefore, (C, {ιi}) is a coproduct of
the family as claimed and we can write S1 t S2 = S1 ∪ S2.

If the sets S1 and S2 are not disjoint and the functions f1 and f2 do
not agree on the intersection, then clearly we cannot define f as above.
Nevertheless, in this case we can make disjoint copies of S1 and S2 and then
argue that their union is (the object part of) a coproduct of S1 and S2, the
so-called “disjoint union” (see Exercise 15–1).

15 – Exercises

15–1 Let {Si}i∈I be a family of sets. For each i put S′i = {(s, i) | s ∈ Si}.
Prove that there exists a coproduct of the family {Si}i∈I in the category
Set having object part

⋃
i∈I S

′
i (called the disjoint union of the family

{Si}i∈I).

15–2 For groups G1 and G2 let ιi : Gi → G1×G2 be the injections defined
by ι1(g1) = (g1, e2) and ι2(g2) = (e1, g2). Prove that (G1 ×G2, {ιi}) is not,
in general, a coproduct of the family {Gi} in the category Grp.

Hint: Let G be a nonabelian group and take Gi = G (i = 1, 2). In the
definition of coproduct, let A be G and let fi = 1G (i = 1, 2).
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16 Direct product and direct sum

16.1 Definition: Direct product

Let {Gi}i∈I be an indexed family of groups. Denote by
∏
i∈I Gi (or just∏

Gi) the set of all functions a : I →
⋃
iGi such that ai = a(i) ∈ Gi for

each i ∈ I. For a, b ∈
∏
Gi define ab ∈

∏
Gi by (ab)i = aibi. With this

binary operation
∏
Gi is a group, the direct product of the family {Gi}i∈I .

(See the theorem below for the category interpretation.)
Consider the special case I = {1, 2}. Here, an element a of

∏
Gi can

be represented by a pair (a1, a2) with the image of 1 occupying the first
position and the image of 2 occupying the second position. Note that for a
and b in

∏
Gi the product ab is represented by the pair (a1b1, a2b2). Thus,

the group
∏
Gi identifies with the direct product G1 ×G2 of G1 and G2 as

defined in 2.10.
Similarly, if I = {1, 2, . . . , r} for some positive integer r, then

∏
Gi

identifies with the group

G1 ×G2 × · · · ×Gr = {(a1, a2, . . . , ar) | ai ∈ Gi}

with componentwise binary operation. The general definition of direct prod-
uct given above is needed to handle the case of an arbitrary (possibly infi-
nite) indexing set I. However, when the indexing set is {1, 2, . . . , r}, it is
customary to use the tuple notation for elements.

For each i ∈ I, define πi :
∏
Gj :→ Gi by πi(a) = ai.

Theorem. (
∏
Gi, {πi}) is a product of the family {Gi}i∈I in the category

Grp.

Proof. Put P =
∏
Gi. For i ∈ I, we have, for a, b ∈ P , πi(ab) = (ab)i =

aibi = πi(a)πi(b), so πi is a homomorphism.
Let G be a group and let fi : G→ Gi (i ∈ I) be homomorphisms. Define

f : G→ P by f(g)i = fi(g). If g, h ∈ G, then, for each i ∈ I, we have

f(gh)i = fi(gh) = fi(g)fi(h) = f(g)if(h)i = (f(g)f(h))i,

so f(gh) = f(g)f(h). Therefore, f is a homomorphism.
For each g ∈ G and i ∈ I, we have (πi ◦f)(g) = πi(f(g)) = f(g)i = fi(g),

so πi ◦ f = fi.

93



Finally, if f ′ : G → P is a homomorphism that satisfies πi ◦ f ′ = fi
for all i ∈ I, then for each g ∈ G and i ∈ I, we have f ′(g)i = πi(f

′(g)) =
(πi ◦ f ′)(g) = fi(g) = f(g)i, so that f ′ = f , demonstrating uniqueness.

This completes the proof.

16.2 Definition: Direct sum

Let {Gi}i∈I be an indexed family of abelian groups (with additive notation).
Denote by

∑
i∈I Gi (or just

∑
Gi) the subset of

∏
Gi consisting of all a for

which |{i ∈ I | ai 6= 0}| < ∞. Thus,
∑
Gi is the set of all elements of

∏
Gi

that map all but finitely many elements of I to the identity element of the
corresponding group. It is easily checked that

∑
Gi is a subgroup of

∏
Gi.

It is the direct sum of the family {Gi}i∈I . If I = {1, 2, . . . , r}, this group
is also denoted G1 ⊕G2 ⊕ · · · ⊕Gr.

Note that
∏
Gi =

∑
Gi if I is finite.

For each i ∈ I, define ιi : Gi →
∑
Gj by ιi(g)j = δij(g), where δij : Gi →

Gj is the Kronecker delta function, which is the identity map if i = j and
the zero map if i 6= j.

Theorem. (
∑
Gi, {ιi}) is a coproduct of the family {Gi}i∈I in the category

Ab.

Proof. Put C =
∑
Gi. Let i ∈ I. For g, h ∈ Gi, we have

ιi(g + h)j = δij(g + h) = δij(g) + δij(h) = ιi(g)j + ιi(h)j

= (ιi(g) + ιi(h))j

for each j, so ιi(g + h) = ιi(g) + ιi(h). Therefore, ιi is a homomorphism.
Let A be an abelian group and for each i ∈ I let fi : Gi → A be a

homomorphism. Define f : C → A by f(c) =
∑

i fi(ci) (this possibly infinite
sum being regarded as a finite sum by ignoring each term with ci = 0). For
c, d ∈ C, we have

f(c+ d) =
∑
i

fi((c+ d)i) =
∑
i

fi(ci + di) =
∑
i

[fi(ci) + fi(di)]

=
∑
i

fi(ci) +
∑
i

fi(di) = f(c) + f(d),

so f is a homomorphism.
Let i ∈ I. For each g ∈ Gi, we have

f ◦ ιi(g) = f(ιi(g)) =
∑
j

fj(ιi(g)j) =
∑
j

fj(δij(g)) = fi(g),
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so f ◦ ιi = fi.
Finally, let f ′ : C → A be a homomorphism that satisfies f ′ ◦ ιi = fi

for each i. Let c ∈ C. For each j, we have cj =
∑

i δij(ci) =
∑

i ιi(ci)j =
(
∑

i ιi(ci))j , so that c =
∑

i ιi(ci). Therefore,

f ′(c) = f ′(
∑
i

ιi(ci)) =
∑
i

f ′(ιi(ci)) =
∑
i

f ′ ◦ ιi(ci)

=
∑
i

fi(ci) = f(c),

so that f ′ = f , demonstrating uniqueness.
This completes the proof.

16.3 Internal direct product/sum

Let G be a group and let N1, N2, . . . , Nr be normal subgroups of G. The
group G is the internal direct product of N1, N2, . . . , Nr, written G =∏̇
Ni if

(i) G = N1N2 · · ·Nr = {n1n2 · · ·nr |ni ∈ Ni, 1 ≤ i ≤ r},

(ii) Ni ∩ (N1N2 · · · N̂i · · ·Nr) = {e} for each 1 ≤ i ≤ r,

where N̂i signifies that the ith factor is omitted. If G is an additive group
and these conditions are met (with the appropriate translation to additive
notation), it is the internal direct sum of N1, N2, . . . , Nr, written G =∑̇
Ni (or G = N1+̇N2+̇ · · · +̇Nr). In the notations for direct product and

direct sum, the dot can be thought of as indicating the trivial intersection
property (ii).

Lemma. Let 1 ≤ i, j ≤ r.

(i) If Ni ∩Nj = {e}, then the elements of Ni commute with those of Nj.

(ii) If G satisfies (ii) in the definition above and i 6= j, then the elements
of Ni commute with those of Nj.

Proof. (i) Assume that Ni ∩Nj = {e}. For ni ∈ Ni and nj ∈ Nj , we have

ninjn
−1
i n−1j ∈ Ni ∩Nj = {e},

as can be seen by grouping the first three factors and using the normality
assumption, and then doing the same with the last three factors. Therefore,
ninj = njni and the claim follows.
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(ii) Assume that G satisfies (ii) in the above definition and that i 6= j.
Then Ni ∩Nj ⊆ Ni ∩ (N1N2 · · · N̂i · · ·Nr) = {e}, so the claim follows from
part (i).

Theorem. G =
∏̇
Ni if and only if each a in G can be expressed uniquely

as a product a = n1n2 · · ·nr with ni ∈ Ni for each i.

Proof. Assume that G =
∏̇
Ni. Let a ∈ G. By (i) of the definition, a =

n1n2 · · ·nr with ni ∈ Ni.
Now suppose that also a = m1m2 · · ·mr with mi ∈ Ni. Then we have

n1n2 · · ·nr = m1m2 · · ·mr, and for each i,

m−1i ni =
∏
j 6=i

n−1j mj ∈ Ni ∩ (N1N2 · · · N̂i · · ·Nr) = {e}

by (ii) of the definition (and the lemma). Therefore, ni = mi. This shows
uniqueness of the expression.

Now assume that each a in G can be expressed uniquely as a product
a = n1n2 · · ·nr with ni ∈ Ni. Then (i) of the definition is satisfied. Fix i
and let ni ∈ Ni ∩ (N1N2 · · · N̂i · · ·Nr). Then ni = n1n2 · · ·ni−1ni+1 · · ·nr
for some nj ∈ Nj . This equation can be written

ee · · · enie · · · e = n1n2 · · ·ni−1eni+1 · · ·nr,

so the uniqueness assumption says that ni = e. This shows that Ni ∩
(N1N2 · · · N̂i · · ·Nr) = {e}, which is (ii) of the definition. The proof is
complete.

16.4 Internal direct product is isomorphic to direct product

Let G be a group and let N1, N2, . . . , Nr be normal subgroups of G.

Theorem. If G =
∏̇
Ni, then G ∼=

∏
Ni.

Proof. Assume that G =
∏̇
Ni. Define ϕ :

∏
Ni → G by

ϕ((n1, n2, . . . , nr)) = n1n2 · · ·nr.

This function is bijective by 16.3.
For n,m ∈

∏
Ni, we have

ϕ(nm) = ϕ((n1m1, n2m2, . . . , nrmr)) =
∏
i

nimi =
∏
i

ni
∏
i

mi

= ϕ(n)ϕ(m),

where we have used the lemma in Section 16.3. Therefore, ϕ is a homomor-
phism and hence an isomorphism. This proves that G ∼=

∏
Ni.
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16.5 Example: Vector space

Let V be a finite dimensional vector space over R and let v1, v2, . . . , vr be a
basis of V . For each i, put

Ni = Rvi = {αvi |α ∈ R}.

Then each Ni is a normal subgroup of the additive group V . The spanning
property of a basis implies that V = N1 +N2 + · · ·+Nr, which is (i) in the
definition of internal direct sum (16.3).

Let v ∈ Ni ∩ (N1 + · · ·+ N̂i + · · ·Nr). Then v = αivi and also

v = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·αrvr

for some αj ∈ R (1 ≤ j ≤ r). The linear independence property of basis
then implies that αj = 0 for each j so that v = 0. This gives (ii) in the

definition of internal direct sum. Thus V =
∑̇
Ni.

By 16.4, V ∼=
∑
Ni. Since each Ni is isomorphic to R as groups we

get the well-known isomorphism V ∼=
∑r

i=1 R = Rr (shown here to be an
isomorphism of groups, but in fact this is an isomorphism of vector spaces
as well).

16 – Exercises

16–1 Let A, B, and C be (additive) abelian groups, let f : A → C be a
monomorphism, and let g : C → B be an epimorphism, and assume that
im f = ker g.

(a) Assume that there exists a homomorphism h : C → A such that
h ◦ f = 1A. Prove that C ∼= A⊕B.

(b) Assume that there exists a homomorphism h : B → C such that
g ◦ h = 1B. Prove that C ∼= A⊕B.
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17 Group decomposition

17.1 Definition

A group is decomposable if it is the internal direct product of two (or
more) of its proper normal subgroups. A group is indecomposable if it is
nontrivial and not decomposable.

In view of 16.4, a group is decomposable if and only if it is isomorphic
to a direct product (or sum if additive) of two groups neither of which is
trivial.

17.2 Example: Normal Sylow p-subgroups

Let G be a finite group and let p1, p2, . . . , pr be the (distinct) prime divisors
of the order of G. Assume that for each i, G has a normal Sylow pi-subgroup
Pi. By Section 14.3, this assumption is equivalent to the assumption that
G has a unique Sylow pi-subgroup Pi for each i.

Theorem. G =
∏̇
iPi.

Proof. By Section 6.5, H := P1P2 · · ·Pr is a subgroup of G. We claim that
H is the internal direct product of its normal subgroups Pi (1 ≤ i ≤ r).
Part (i) of the definition is immediate.

Let 1 ≤ i, j ≤ r and assume that i 6= j. It follows from Lagrange’s
theorem that Pi ∩ Pj = {e} since this intersection is a subgroup of both
Pi and Pj , which have relatively prime orders. By the lemma of 16.3, the
elements of Pi commute with those of Pj .

Fix i and let g ∈ Pi ∩ (P1P2 · · · P̂i · · ·Pr). We have g =
∏
j 6=i gj for some

gj ∈ Pj . Let n =
∏
j 6=i nj , where nj = |Pj |. Using the previous paragraph,

we get

gn = (
∏
j 6=i

gj)
n =

∏
j 6=i

gnj = e,

which implies that the order of g divides n. But g is an element of Pi, so its
order divides |Pi| as well. Since n and |Pi| are relatively prime, we conclude
that g = e. Therefore, part (ii) of the definition of internal direct product
holds and the claim is established.

By 16.4, H is isomorphic to the direct product
∏
i Pi, so |H| =

∏
i |Pi| =

|G|. We conclude that G = H =
∏̇
iPi.
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17.3 Example: Finite cyclic group

Let m and n be positive integers and denote by gcd(m,n) the greatest
common divisor of m and n.

Theorem.

(i) Zmn ∼= Zm ⊕ Zn if and only if gcd(m,n) = 1.

(ii) Zn is indecomposable if and only if n = pk for some prime number p
and some k ∈ N.

Proof. (i) Assume that Zmn ∼= Zm ⊕ Zn. Let (a, b) ∈ Zm ⊕ Zn correspond
to 1 ∈ Zmn under an isomorphism. Let k be an arbitrary multiple of both
m and n, so that k = m′m and k = n′n for some integers m′ and n′. We
have

k(a, b) = (ka, kb) = (m′ma, n′nb) = (m′e, n′e) = (e, e),

so that mn = o((a, b)) | k. This shows that mn is the least common multiple
of m and n, which in turn implies that gcd(m,n) = 1.

Now assume that gcd(m,n) = 1. Since Zmn is abelian, its Sylow p-
subgroups are normal, so Section 17.2 applies. By reason of order, the sum
Pm of the Sylow p-subgroups of Zmn with p dividing m has order m, and
it is cyclic (4.4) and therefore isomorphic to Zm. Similarly, the sum Pn
of the Sylow p-subgroups with p dividing n is isomorphic to Zn. By 17.2,
Zmn is the internal direct sum of Pm and Pn and is therefore isomorphic to
Pm ⊕ Pn ∼= Zm ⊕ Zn.

(ii) Assume that Zn is indecomposable. Since an indecomposable group
is nontrivial, n is not 1 and is therefore divisible by some prime number p.
By part (i), n is divisible by at most one prime number. We conclude that
n = pk for some k ∈ N.

Now assume that n = pk for some prime number p and some k ∈ N. Let
A and B be subgroups of Zn and assume that Zn is the internal direct sum
of A and B. By Section 4.4, A and B are both cyclic, so that A ∼= Zl and
B ∼= Zm for some positive integers l and m. Then Zn ∼= Zl⊕Zm by Section
16.4, implying that gcd(l,m) = 1 by part (i). But l and m are divisors of
n by Lagrange’s theorem and hence powers of p. Therefore, either l = 1 or
m = 1, that is, either A is trivial or B is trivial. We conclude that Zn is
indecomposable.
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17.4 Krull-Remak-Schmidt theorem

Let G be a group and assume that G has a composition series. The following
theorem says that G can be decomposed into a direct product of indecom-
posable groups and done so in an essentially unique way. In the statement,
the term “direct product” has the usual broad meaning, which includes the
possibility of only one factor.

Theorem (Krull-Remak-Schmidt).

(i) G is isomorphic to a direct product of finitely many indecomposable
groups.

(ii) If G ∼= H1 × · · · ×Hr and also G ∼= K1 × · · · ×Ks with each Hi and
Kj indecomposable groups, then r = s and there exists a permutation
σ ∈ Sr such that Hi

∼= Kσ(i) for each 1 ≤ i ≤ r.

Proof. Omitted.

17.5 Fundamental theorem of finite abelian groups

Let G be a nontrivial finite abelian group.

Theorem (Fundamental theorem of finite abelian groups).

(i) There exist unique prime numbers p1 < p2 < · · · < pn and unique
positive integers ki1 ≤ ki2 ≤ · · · ≤ kimi, 1 ≤ i ≤ n, such that

G ∼=
∑
i,j

Z
p
kij
i

.

(ii) There exist unique positive integers m1|m2| . . . |mt such that

G ∼=
∑
i

Zmi .

Proof. (i) The uniqueness statement follows immediately from the Krull-
Remak-Schmidt theorem (17.4) and (ii) of Section 17.3, so we turn to the
existence statement. By Section 17.2, we may (and do) assume that G is a
p-group for some prime number p.

Let C = 〈c〉 be a cyclic subgroup of G of greatest possible order. We
claim that there exists a subgroup H of G such that G is the internal direct
product of C and H. Once this is established, the desired decomposition
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will follow, since a proof by induction on the order of G will show that G is
isomorphic to a direct product of cyclic groups, each of order a power of p.

We prove the claim by induction on n = |G|/|C|. If n = 1, then C = G
and we can let H = {e}. Assume that n > 1, so that C 6= G. There exists
an element a ∈ G with a /∈ C. Assume that a has been chosen with minimal
order. Now o(ap) < o(a) (since a 6= e), so that ap ∈ C. If ap were to
generate C, we would have |〈a〉| = p|C| > |C|, contrary to the choice of C.
Therefore, ap does not generate C, so, by Exercise 5–5, we have ap = cpk

for some integer k. Hence, ac−k is an element of order p not in C. By the
choice of a, a too has order p.

Put A = 〈a〉 and G′ = G/A, and let π : G → G′ be the canonical
epimorphism. The kernel of π is A, which intersects C trivially, so π restricts
to an isomorphism C → π(C) =: C ′. Since a homomorphic image of an
element has order at most the order of the element, it follows that C ′ is a
cyclic subgroup of G′ of greatest possible order.

Now |G′|/|C ′| = |G|/(p|C|) < n so the induction hypothesis applies to
guarantee the existence of a subgroup H ′ of G′ such that G′ = C ′H ′ and
C ′ ∩H ′ = {e′}. By the correspondence theorem (9.6), H ′ = π(H) for some
subgroup H of G with H ⊇ A. Now π(G) = G′ = C ′H ′ = π(C)π(H) =
π(CH), so, again by the correspondence theorem, G = CH. Also,

π(C ∩H) ⊆ π(C) ∩ π(H) = C ′ ∩H ′ = {e′},

so C ∩H ⊆ kerπ = A. Therefore,

C ∩H ⊆ A ∩ (C ∩H) = (A ∩ C) ∩H = {e} ∩H = {e}.

Thus, G is the internal direct product of C and H. In light of the earlier
remarks, we see that this completes the proof of part (i).

(ii) This claim is proved by exhibiting an algorithm for computing such
m1,m2, . . . ,mt from the decomposition in part (i) (establishing existence),
as well as an algorithm for going the other way (establishing uniqueness).
Rather than presenting the general algorithms, we illustrate in Section 17.6
how they are carried out for a specific group.

The prime powers p
kij
i (1 ≤ i ≤ n, 1 ≤ j ≤ mi) appearing in (i) are the

elementary divisors of G. The positive integers mi (1 ≤ i ≤ t) appearing
in (ii) are the invariant factors of G.
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17.6 Example

Let G = Z10 ⊕ Z35 ⊕ Z8 ⊕ Z98. Using 17.3(i) as well as associativity and
commutativity of direct sum, we get

G = Z10 ⊕ Z35 ⊕ Z8 ⊕ Z98

∼= (Z2 ⊕ Z5)⊕ (Z5 ⊕ Z7)⊕ Z23 ⊕ (Z2 ⊕ Z72)
∼= Z2 ⊕ Z2 ⊕ Z23 ⊕ Z5 ⊕ Z5 ⊕ Z7 ⊕ Z72 ,

so the elementary divisors of G are 2, 2, 23, 5, 5, 7, 72.
Note that if these prime powers are arranged in rows with the greatest

powers forming the bottom row,

2
2 5 7
23 5 72,

then each row product divides the next: 2|70|1960. Using 17.3(i) again, we
get

G ∼= Z2 ⊕ (Z2 ⊕ Z5 ⊕ Z7)⊕ (Z23 ⊕ Z5 ⊕ Z72)
∼= Z2 ⊕ Z70 ⊕ Z1960,

so the invariant factors of G are 2, 70, 1960. Conversely, if one begins with
these invariant factors, then, by displaying their prime power factorizations
as above, one obtains the elementary divisors.
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18 Solvable group

18.1 Definition

Let G be a group. A subnormal series (Gi) = (G0, G1, . . . , Gr) of G is a
solvable series if each of its factors Gi/Gi+1 is abelian. The group G is
solvable if it has a solvable series.

For example, an abelian group is solvable. (Indeed, if G is an abelian
group, then (G, {e}) is a subnormal series of G with a single factor (isomor-
phic to) the abelian group G.) Therefore, the notion of “solvable group”
generalizes the notion of “abelian group.”

The term “solvable” is due to a theorem involving solutions of polynomial
equations. This theorem says that if p(x) is a polynomial over Q (or more
generally over any field of characteristic zero), then the equation p(x) = 0 is
solvable by radicals over Q (meaning roughly that the (complex) solutions
can all be expressed using only Q and the operations +,−,×,÷, n

√
) if and

only if a certain group connected to p(x), its Galois group over Q, is solvable
as defined above.

18.2 Example: Dihedral group is solvable

Let n be a positive integer. Recall (4.3) that the dihedral group D2n is
generated by the set {ρ, τ}. In cycle notation we have ρ = (1, 2, . . . , n), so
〈ρ〉 is a cyclic subgroup of D2n of order n. Since D2n has order 2n, this
subgroup has index 2 and is therefore normal. Thus, (D2n, 〈ρ〉, {ε}) is a
subnormal series of D2n. Since the factors of this series are (isomorphic to)
Z2 and Zn, both of which are abelian, the dihedral group is solvable.

18.3 Derived series

Let G be a group. Recall that the commutator of two elements a and b of
G is [a, b] = a−1b−1ab and the commutator subgroup of G is

G(1) = 〈[G,G]〉,

where [G,G] = {[a, b] | a, b ∈ G}.
The derived series of G is the sequence of subgroups G(0), G(1), G(2), . . .

defined recursively by

• G(0) = G,
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• G(i) = (G(i−1))(1) (i > 0).

So the derived series of G starts with G and each remaining term is the
commutator subgroup of the preceding term.

Theorem. G is solvable if and only if G(n) = {e} for some n.

Proof. Assume that G is solvable. There exists a solvable series (G0, G1,
. . . , Gr) of G.

We claim that Gi ⊇ G(i) for each 0 ≤ i ≤ r. The proof is by induction
on i. The case i = 0 is G0 = G = G(0), so it holds. Assume that i > 0.
Using the induction hypothesis, we have

G(i) = 〈[G(i−1), G(i−1)]〉 ⊆ 〈[Gi−1, Gi−1]〉 = G
(1)
i−1.

Now Gi−1/Gi is abelian, so Section 7.3 and this inclusion give Gi ⊇ G(1)
i−1 ⊇

G(i), as desired.
Since {e} = Gr ⊇ G(r), we have G(r) = {e}, so the condition is satisfied

with n = r.
Now assume that G(n) = {e} for some n. For each 0 ≤ i ≤ n, put

Gi = G(i). We have Gi = (G(i−1))(1) = G
(1)
i−1 for each 0 < i ≤ n. By Section

7.3, (G0, G1, . . . , Gn) is a solvable series of G. Therefore, G is solvable.

18.4 Subgroup and homomorphic image

Let G be a group.

Theorem.

(i) If G is solvable and H ≤ G, then H is solvable.

(ii) If G is solvable and ϕ : G → G′ is a homomorphism, then imϕ is
solvable.

(iii) If N/G, then G is solvable if and only if N and G/N are both solvable.

Proof. The proof continually uses, with no further indication, the charac-
terization of solvable group given in 18.3.

(i) We begin by making the observation that for any subgroups H and
K of G with H ⊆ K,

H(1) = 〈[H,H]〉 ⊆ 〈[K,K]〉 = K(1).
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Let H ≤ G. We claim that H(i) ⊆ G(i) for each i. The proof is by
induction on i. Since H(0) = H ⊆ G = G(0), the claim holds for i = 0.

Assume that i > 0. By the induction hypothesis and the observation
made above, we have

H(i) = (H(i−1))(1) ⊆ (G(i−1))(1) = G(i),

so the claim is established.
Assume that G is solvable. We have G(n) = {e} for some n, so that

H(n) ⊆ G(n) = {e}. Therefore, H(n) = {e} and H is solvable.
(ii) Let ϕ : G → G′ be a homomorphism. We begin by making the

observation that for any subgroup H of G,

ϕ(H)(1) = 〈[ϕ(H), ϕ(H)]〉 = 〈ϕ([H,H])〉 = ϕ(〈[H,H]〉) = ϕ(H(1)).

We claim that ϕ(G)(i) = ϕ(G(i)) for each i. The proof is by induction
on i. Since ϕ(G)(0) = ϕ(G) = ϕ(G(0)), the claim holds for i = 0.

Assume that i > 0. By the induction hypothesis and the observation
made above, we have

ϕ(G)(i) = (ϕ(G)(i−1))(1) = ϕ(G(i−1))(1) = ϕ((G(i−1))(1)) = ϕ(G(i)),

so the claim is established.
Assume that G is solvable. We have G(n) = {e} for some n, so that

ϕ(G)(n) = ϕ(G(n)) = ϕ({e}) = {e′}. Therefore, imϕ = ϕ(G) is solvable.
(iii) Let N /G. If G is solvable, then N is solvable by part (i) and G/N

is solvable by part (ii), using the canonical epimorphism π : G→ G/N .
Assume that N and G/N are both solvable. We have (G/N)(m) = {N}

for some m. By the established claim in the proof of part (ii),

{N} = (G/N)(m) = π(G)(m) = π(G(m)),

implying that G(m) ⊆ N . By part (i), G(m) is solvable, so that G(m+n) =
(G(m))(n) = {e} for some n. Therefore, G is solvable.

18.5 Sn not solvable for n ≥ 5

Theorem. The symmetric group Sn is not solvable for n ≥ 5.

Proof. Let n ≥ 5. Since a subgroup of a solvable group is solvable (18.4) it
is enough to prove that the alternating group G = An is not solvable. Since
G is simple (14.6), G(1) is either G or {e}.
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Suppose that G(1) = {e}. Then the quotient G/G(1) is isomorphic to G,
which is nonabelian since, for instance, the cycles (1, 2, 3) and (3, 4, 5) are
elements of G and

(1, 2, 3)(3, 4, 5) = (1, 2, 3, 4, 5) 6= (1, 2, 4, 5, 3) = (3, 4, 5)(1, 2, 3).

But this contradicts Section 7.3.
Therefore, G(1) = G, and it follows that G(n) = G 6= {ε} for all n.

We conclude from Section 18.3 that G is not solvable. This completes the
proof.

It is shown in Galois theory that the Galois group over Q of the quintic
polynomial x5−4x+ 2 is S5. In view of the remarks in 18.1 and the present
theorem, the equation x5 − 4x + 2 = 0 is not solvable by radicals over Q.
In particular, there is no generalization of the quadratic formula that gives
the solutions of a general fifth degree polynomial equation.

18.6 A group of odd order is solvable

The following result, known as the Odd Order theorem (also the Feit-
Thompson theorem), was a major step toward the eventual proof of the
classification theorem of finite simple groups (see 10.7). The proof, pub-
lished in 1963 and occupying 255 journal pages, built on pioneering work of
Michio Suzuki.

Theorem (Feit-Thompson). A group of odd order is solvable.

18 – Exercises

18–1 Let H1, H2, . . . ,Hn be groups and put G = H1 × · · · × Hn. Prove
that G is solvable if and only if Hi is solvable for each 1 ≤ i ≤ n.

18–2 Let p and q be prime numbers. Prove that a group of order pq is
solvable.

Hint: Reduce to the case p 6= q and then use Sylow theory.
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19 Nilpotent group

19.1 Definition

Let G be a group. A central series of G is a tuple (N0, N1, . . . , Nr), where

(i) Ni / G for all i,

(ii) Ni−1 ⊆ Ni for all 0 < i ≤ r,

(iii) Ni/Ni−1 ⊆ Z(G/Ni−1) for all 0 < i ≤ r.

G is nilpotent if it has a central series (N0, N1, . . . , Nr) such that N0 = {e}
and Nr = G.

• If G is abelian, then it is nilpotent since ({e}, G) is a central series.

19.2 Upper central series

Let G be a group. The upper central series of G is the sequence Z0, Z1,
Z2, . . . of subgroups of G with Zi = Zi(G) defined recursively by

(i) Z0 = {e},

(ii) Zi = π−1(Z(G/Zi−1)) for i > 0,

where π : G → G/Zi−1 is the canonical epimorphism. Since π is surjective
we have for each i > 0

Zi/Zi−1 = π(Zi) = π(π−1(Z(G/Zi−1))) = Z(G/Zi−1).

This formula shows that (Z0, Z1, . . . , Zr) is a central series of G for each
nonnegative integer r.

19.3 Lower central series

Let G be a group. The lower central series of G is the sequence L0, L1,
L2, . . . of subgroups of G with Li = Li(G) defined recursively by

(i) L0 = G,

(ii) Li = 〈[G,Li−1]〉 for i > 0,
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where [G,Li−1] = {[g, x] | g ∈ G, x ∈ Li−1}.
For each positive integer r, (Lr, Lr−1, . . . , L0) is a central series of G (see

Exercise 19–1).
There is a transparent relationship between the lower central series of

G and the derived series G(0), G(1), G(2), . . . of G (see 18.3 for the definition):

Theorem. G(i) ⊆ Li for each i ≥ 0.

Proof. The proof is by induction on i. Since G(0) = G = L0, the case i = 0
holds.

Assume that i > 0. We have

G(i) = 〈[G(i−1), G(i−1)]〉 ⊆ 〈[Li−1, Li−1]〉 ⊆ 〈[G,Li−1]〉 = Li

where the first inclusion is due to the induction hypothesis.

19.4 Upper/lower central series characterization of nilpotent

Let G be a group.

Theorem. The following are equivalent:

(i) G is nilpotent;

(ii) Lr = {e} for some r;

(iii) Zr = G for some r.

Proof. (i) implies (ii): Assume that (i) holds, so that there exists a central
series (N0, N1, . . . , Nr) of G with N0 = {e} and Nr = G.

It is enough to prove that Li ⊆ Nr−i for each i, for then Lr = Nr−r =
N0 = {e}. We proceed by induction on i. Since L0 = G = Nr−0, the case
i = 0 holds.

Assume that i > 0. For n ∈ Nr−i+1 and g ∈ G, we have, using the
definition of central series, [g, n]Nr−i = [gNr−i, nNr−i] = Nr−i, so that
[g, n] ∈ Nr−i. This shows that [G,Nr−i+1] ⊆ Nr−i. Therefore,

Li = 〈[G,Li−1]〉 ⊆ 〈[G,Nr−(i−1)]〉 ⊆ Nr−i,

where the first inclusion is from the induction hypothesis. This completes
the proof of this implication.

(ii) implies (iii): Assume that (ii) holds, so that Lr = {e} for some r.
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It is enough to prove that Zi ⊇ Lr−i for each i, for then Zr ⊇ Lr−r =
L0 = G. We proceed by induction on i. Since Z0 = {e} = Lr−0, the case
i = 0 holds.

Assume that i > 0. Let l ∈ Lr−i and g ∈ G. Using the definition of the
lower central series and the induction hypothesis, we have

[g, l] ∈ Lr−i+1 = Lr−(i−1) ⊆ Zi−1,

so that [gZi−1, lZi−1] = [g, l]Zi−1 = Zi−1. It follows that lZi−1 ∈ Z(G/Zi−1).
Therefore, Zi = π−1(Z(G/Zi−1) ⊇ Lr−i, where π : G → G/Zi−1 is the
canonical epimorphism. This completes the proof of this implication.

(iii) implies (i): Assume that (iii) holds, so that Zr = G for some r.
From the equation Zi/Zi−1 = Z(G/Zi−1) (see 19.2), it follows that (Zi) is
an upper central series of G. Since Z0 = {e} and Zr = G, G is nilpotent.
This completes the proof.

19.5 Nilpotent group is solvable

Let G be a group.

Theorem. If G is nilpotent, then G is solvable.

Proof. Assume that G is nilpotent so that Lr = {e} for some r, where (Li)
is the lower central series of G (see 19.4). By Section 19.3, G(r) ⊆ Lr = {e},
so that G is solvable by Section 18.3.

The converse of this theorem does not hold (see Section 19.9 below).

19.6 Finite p-group is nilpotent

Let p be a prime number.

Theorem. A finite p-group is nilpotent.

Proof. Let G be a finite p-group. By Section 19.4, it is enough to show that
Zr = G for some r, where (Zi) is the upper central series of G. If i ≥ 0
and Zi 6= G, then the quotient G/Zi is nontrivial and it is a p-group (using
Lagrange’s theorem), so Section 13.3 gives Zi+1 = π−1(Z(G/Zi)) ) Zi,
where π : G → G/Zi is the canonical epimorphism. Since G is finite, we
must have Zr = G for some r (else, the upper central series would be a
strictly increasing sequence of subgroups).

109



19.7 Subgroup and homomorphic image

Let G be a nilpotent group.

Theorem.

(i) If H is a subgroup of G, then H is nilpotent.

(ii) If ϕ : G→ G′ is a homomorphism, then imϕ is nilpotent.

Proof. (i) Let H be a subgroup of G. By Section 19.4, it is enough to prove
that Li(H) ⊆ Li(G) for each i, for then, since Lr(G) = {e} for some r,
we would have Lr(H) = {e} as well. We proceed by induction on i. Since
L0(H) = H ⊆ G = L0(G), the case i = 0 holds. Assume that i > 0. We
have

Li(H) = 〈[H,Li−1(H)]〉 ⊆ 〈[G,Li−1(G)]〉 = Li(G),

where the inclusion is from the induction hypothesis. This completes the
proof of this part.

(ii) Let ϕ : G → G′ be a homomorphism. By Section 19.4, it is enough
to prove that Li(ϕ(G)) ⊆ ϕ(Li(G)) for each i, for then, since Lr(G) = {e}
for some r, we would have

Lr(imϕ) = Lr(ϕ(G)) ⊆ ϕ(Lr(G)) = ϕ({e}) = {e′}

as well. We proceed by induction on i. Since L0(ϕ(G)) = ϕ(G) = ϕ(L0(G)),
the case i = 0 holds. Assume that i > 0. We have

Li(ϕ(G)) = 〈[ϕ(G), Li−1(ϕ(G))]〉 ⊆ 〈[ϕ(G), ϕ(Li−1(G))]〉
⊆ ϕ〈[G,Li−1(G)]〉 = ϕ(Li(G)),

where the first inclusion is from the induction hypothesis. This completes
the proof.

19.8 Product is nilpotent iff factors are

Let G1, G2, . . . , Gn be groups and put G = G1 ×G2 × · · · ×Gn.

Theorem. G is nilpotent if and only if Gi is nilpotent for each 1 ≤ i ≤ n.

Proof. Assume that G is nilpotent. For each 1 ≤ i ≤ n, the map πi : G→ Gi
given by πi((a1, a2, . . . , an)) = ai is an epimorphism, so Gi is nilpotent by
part (ii) of 19.7.
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Assume that Gi is nilpotent for each 1 ≤ i ≤ n. By Section 19.4, it is
sufficient to prove that Lj(G) ⊆ Lj(G1)× · · · ×Lj(Gn) for each j, for then,
since, for each i, there exists ri such that Lri(Gi) = {ei}, we would have

Lr(G) ⊆ Lr(G1)× · · · × Lr(Gn) ⊆ Lr1(G1)× · · · × Lrn(Gn)

= {e1} × · · · × {en} = {e},

where r is the largest of the ri. We proceed by induction on j. Since
L0(G) = G = G1 × · · · ×Gn = L0(G1)× · · · ×L0(Gn), the case j = 0 holds.
Assume that j > 0. We have

Lj(G) = 〈[G,Lj−1(G)]〉
⊆ 〈[G1 × · · · ×Gn, Lj−1(G1)× · · · × Lj−1(Gn)]〉
= 〈[G1, Lj−1(G1)]〉 × · · · × 〈[Gn, Lj−1(Gn)]〉
= Lj(G1)× · · · × Lj(Gn),

where the inclusion is from the induction hypothesis. The proof is complete.

19.9 Finite group nilpotent iff product of p-groups

Let G be a finite group.

Theorem. The following are equivalent:

(i) G is nilpotent;

(ii) If H is a proper subgroup of G, then NG(H) ) H;

(iii) G has a normal Sylow p-subgroup for each prime number p;

(iv) G is isomorphic to a direct product of p-groups for various prime num-
bers p.

Proof. (i) implies (ii): Assume that (i) holds, so that Zr = G for some r,
where (Zi) is the upper central series of G (see 19.4). Let H be a proper
subgroup of G. Since Z0 = {e} ⊆ H and Zr = G * H, there exists a largest
m for which Zm ⊆ H. By this choice of m, there exists some element a of
Zm+1 that is not in H.

Let h ∈ H. From the definition of Zm+1, we have [h, a]Zm = [hZm, aZm]
= Zm, so that [h, a] ∈ Zm. Therefore, ha = h(h−1a−1ha) = h[h, a] ∈ H,
which implies that a ∈ NG(H)\H and (ii) follows.
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(ii) implies (iii): Assume that (ii) holds. Let p be a prime number and
let P be a Sylow p-subgroup ofG (such exists by the Sylow existence theorem
14.2). Suppose that NG(P ) 6= G. Since G is finite, NG(P ) is contained in
some maximal (proper) subgroup H of G. By our assumption, NG(H) ) H,
so that NG(H) = G. Therefore, H is normal. By the Frattini argument (14–
1), we have G = HNG(P ) ⊆ H, contradicting that H is proper. Therefore,
NG(P ) = G, so that P is normal giving (iii).

(iii) implies (iv): Assume that (iii) holds. By Section 17.2, G is the
internal direct product of its Sylow p-subgroups for various primes numbers
p, so (iv) now follows from Section 16.4.

(iv) implies (i): This implication is immediate from Sections 19.8 and
19.6.

A nilpotent group is solvable (19.5), but a solvable group need not be
nilpotent. Indeed, S3 is solvable since (S3, A3, {ε}) is a subnormal series
of S3 having abelian factors Z2 and Z3, but it is not nilpotent because its
Sylow 2- and 3-subgroups are isomorphic to Z2 and Z3, respectively, and
the direct product of these groups is abelian (while S3 is not).

19 – Exercises

19–1 Let G be a group and let (Li) be the lower central series of G. Prove
that, for each nonnegative integer r, (Lr, Lr−1, . . . , L0) is a central series of
G.

19–2 Let G be a group, let (N0, N1, . . . , Nr) be a central series of G with
N0 = {e}, and let (Zi) be the upper central series of G. Prove that Zi ⊇ Ni

for each 0 ≤ i ≤ r.
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20 Free object of concrete category

20.1 Motivation for definition of free object

Let V be a vector space over a field F . A subset B = {v1, v2, . . . , vn} of V
is a basis for V if

• B generates V (meaning, V = 〈B〉 = intersection of all subspaces of
V containing B),

• B is linearly independent (meaning
∑

i αivi = 0, with αi ∈ F , implies
αi = 0 for all i).

Note that 〈B〉 = {
∑

i αivi |αi ∈ F}, since this latter set is a subspace
containing B (as is easily checked) and it is contained in every subspace of
V that contains B by the closure properties of a subspace. Therefore, to
say that B generates V is the same as saying that every vector in V can
be written as a linear combination of the vectors v1, v2, . . . , vn (which is the
spanning property of a basis one learns in elementary linear algebra).

The two defining properties of a basis given above are convenient for
checking whether a given subset of V is a basis, but the following character-
ization is more useful.

• B is a basis for V if and only if every vector v in V can be written
uniquely in the form v =

∑
i αivi.

(⇒) If B is a basis, then every vector v ∈ V can be written v =
∑

i αivi in
at least one way by the generating (spanning) property, and if v =

∑
i βivi

as well, then the sums must be equal giving
∑

i(αi − βi)vi = 0, whence
αi = βi for all i since the coefficients must be 0 by linear independence.

(⇐) If the unique expression property holds, then B clearly spans (gen-
erates) V and if

∑
i αivi = 0 then, since

∑
i 0vi = 0 as well, uniqueness says

αi = 0 for all i.
The idea of a basis is so useful in the study of vector spaces (as one

knows from linear algebra) that it makes one wonder whether an analogous
concept might be available in categories besides VecF . Such a concept for
a general category would have to be defined entirely in terms of objects and
morphisms since these are all we have in an arbitrary category. As an aid
to our search for a suitable generalization, we look for a characterization
of vector space basis that avoids the inspection of elements required in the
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characterizations given above. The following well-known characterization is
a first attempt.

• B is a basis for V if and only if given any vector space W and any
vectors w1, w2, . . . , wn in W there exists a unique linear transformation
T : V →W such that T (vi) = wi for all i.

The direction (⇒) says that for any vector space W , we can arrange for a
linear transformation T : V → W that has any effect we wish on the basis
vectors, that is, we are free to pick the images T (vi) (since the vectors wi are
arbitrary) and, once these images are chosen there is a (unique) extension
of T to a linear transformation.

This characterization is a step in the right direction since it involves the
linear transformation T , which is a morphism in the category VecF . How-
ever, it falls short of our goal due to the continued dependence on elements.
Here is a slight reworking that will serve as a second attempt:

• B is a basis for V if and only if given any vector space W and any
function f : B → W , there exists a unique linear transformation
T : V →W such that T (vi) = f(vi) for all i.

In this version, we have expressed the choice of basis vector images using
the more categorical function f : B →W . Although this is not a morphism
in the category VecF , it is a morphism in the category Set provided we
forget that W has the structure of a vector space and just think of it as a
set.

This leads us to the idea of characterizing the notion of a basis by using
two categories, VecF and Set, and the fact that one can associate to any
vector space W its underlying set, which we denote σ(W ). In order to clearly
delineate statements made in Set from those made in VecF we introduce a
new set X = {x1, x2, . . . , xn} and put ι(xi) = vi, thus defining an injection
ι : X → σ(V ), which is a morphism in Set. The preceding characterization
now reads

• ι(X) is a basis for V if and only if given any object W of VecF and
any morphism f : X → σ(W ) in Set, there exists a unique morphism
T : V →W in VecF such that σ(T ) ◦ ι = f .

The notation σ(T ) signifies that T is to be viewed simply as a map of sets,
σ(T ) : σ(V ) → σ(W ), which is what is required for σ(T ) ◦ ι = f to make
sense as an equation involving morphisms in Set.

In 20.4, the category Vec will be replaced by an arbitrary category C for
which there is a suitable way to associate to each object A of C a set σ(A),
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and then the fact that V and ι : X → σ(V ) satisfy the above condition will
be expressed by saying that the pair (V, ι) is “free” on X. The association
σ : C → Set we need is an example of a “functor,” the definition of which
is given in 20.2.

20.2 Functor

Let C and D be categories. A functor from C to D, written F : C → D,
is a function

F :

{
obj(C)→ obj(D)

mor(C)→ mor(D)

satisfying the following:

• A f→ B in C implies F (A)
F (f)−→ F (B) in D,

• F (1A) = 1F (A) for each A ∈ obj(C),

• F (g ◦ f) = F (g) ◦ F (f) for all f, g ∈ mor(C) with t(f) = s(g).

Another way of saying the first condition is that if f ∈ mor(C), then
F (s(f)) = s(F (f)) and F (t(f)) = t(F (f)), so that F respects the source
and target maps. Intuitively, F maps all arrows (morphisms) from one ver-
tex (object) to another to arrows from the image of the first vertex to the
image of the second vertex. There is another useful notion of functor that
reverses the direction of the arrows (see Exercise 2).

A functor F : C → D is faithful if for each pair (A,B) of objects of
C the restriction of F to mor(A,B) is injective. A full functor is defined
similarly with “surjective” replacing “injective.”

A concrete category is a pair (C, σ), where C is a category and σ :
C→ Set is a faithful functor. If (C, σ) is a concrete category and it is clear
what σ is intended to be, we say that the category C is concrete.

20.3 Examples of functors

• The forgetful functor σ : Grp → Set sends a group (G, ∗) to its
underlying set G and a homomorphism to itself (just viewed as a map
of sets). There are forgetful functors for the categories Ab, VecF ,
Ω-Grp, G-Set, and Top as well. These categories paired with their
forgetful functors are all concrete.
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• The power set functor P : Set → Set sends a set to its power
set (set of subsets) and sends a morphism f : X → Y to the map
P (f) : P (X)→ P (Y ) defined by P (f)(S) = f(S) for S ⊆ X.

• Let C be a category and let A be an object of C. The (covariant)
mor functor induced by A is the functor FA : C → Set that sends
an object B to the set mor(A,B) and a morphism f : B → B′ to the
map f∗ : mor(A,B)→ mor(A,B′) defined by f∗(g) = f ◦ g.

• The fundamental group functor is the functor π : PTop → Grp
from the category of pointed topological spaces to the category of
groups that sends a pointed space to the fundamental group at the
distinguished point and a morphism to the induced homomorphism.

• If ϕ : G → G′ is a group homomorphism, then a functor C(ϕ) :
C(G) → C(G′) is obtained by defining C(ϕ)(·) = · and C(ϕ)(g) =
ϕ(g) (g ∈ G).

20.4 Free object

Let (C, σ) be a concrete category and let X be a set. A free object on X
in C is a pair (F, ι) with F an object of C and ι : X → σ(F ) a map with
the property that given any object A of C and map f : X → σ(A) there
exists a unique morphism f̄ : F → A in C such that σ(f̄) ◦ ι = f .

If (F, ι) is a free object on X, one sometimes just says that F is free on
X.

A free object onX, if it exists, is unique up to equivalence in the following
strong sense.

Theorem. Let (F, ι) and (F ′, ι′) be free on X in C. There exists a unique
equivalence f : F → F ′ such that σ(f) ◦ ι = ι′. In particular, F ∼= F ′.

Proof. Letting (F ′, ι′) play the role of (A, f) in the definition of free object,
we get a unique morphism ῑ′ : F → F ′ satisfying σ(ῑ′)◦ι = ι′. Similarly, with
(F, ι) now playing the role of (A, f), we get a unique morphism ῑ : F ′ → F
satisfying σ(ῑ) ◦ ι′ = ι. Using the fact that a functor respects compositions
of morphisms, we have

σ(ῑ ◦ ῑ′) ◦ ι = σ(ῑ) ◦ σ(ῑ′) ◦ ι = σ(ῑ) ◦ ι′ = ι.

But also σ(1F ) ◦ ι = 1σ(F ) ◦ ι = ι. From the uniqueness statement in the
definition of free object, we conclude that ῑ ◦ ῑ′ = 1F . Similarly, ῑ′ ◦ ῑ = 1F ′ .
Therefore, f = ῑ′ : F → F ′ is an equivalence, and it is the unique morphism
such that σ(f) ◦ ι = ι′ as noted above.
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20.5 Free group

Let X be a set.

Theorem. There exists a free object on X in the category Grp.

Proof. Omitted.

In lieu of a proof, we give a rough description of a construction of such a
free object (F, ι). A first attempt is to let F be the set of all formal products
x1x2 · · ·xn (xi ∈ X) with multiplication defined to be concatenation. The
empty product (i.e., the indicated product with n = 0) serves as an identity.
However, there are no inverses, so this does not quite work. We fix this
problem by inventing inverses: Let X−1 be a set in one-to-one correspon-
dence with X and with X ∩X−1 = ∅. For x ∈ X, denote the corresponding
element of X−1 by x−1 and call it the inverse of x. Let F be the set of all
formal products u1u2 · · ·un (ui ∈ X ∪X−1), in which an element of X and
its inverse do not appear side by side. Such a formal product is a reduced
word on X. Define multiplication in F to be concatenation followed by
reduction: if the factors on the joined ends are an element of X and its in-
verse, then they are removed; if this produces a juxtaposition of an element
of X and its inverse, then these factors are removed as well; this process is
continued until a reduced word is obtained. Finally, ι : X → σ(F ) is defined
by sending x ∈ X to the word x.

We need to check that (F, ι) satisfies the definition of free object. Let A
be a group and let f : X → σ(A) be a map. For x ∈ X, put f̄(ι(x)) = f(x)
and f̄(ι(x)−1) = f(x)−1 and for a reduced word w = u1u2 · · ·un ∈ F put
f̄(w) = f̄(u1)f̄(u2) · · · f̄(un). Then f̄ ◦ ι = f and it follows easily that
f̄ : F → A is a homomorphism. Moreover F = 〈ι(X)〉, so if f̄ is to satisfy
these conditions it has to be defined as above, and uniqueness follows.

The group F is called the free group on X. It is sometimes written
F (X).

Corollary. Every group G is a homomorphic image of a free group on a
set X, and this set can be chosen to be any generating set for G.

Proof. Let G be a group and let X ⊆ G be a set of generators of G. By the
theorem, there exists a free object (F, ι) on X in the category Grp. Taking
f : X → σ(G) to be the inclusion map in the definition of free object, we
get a homomorphism f̄ : F → G such that σ(f̄) ◦ ι = f . We have

im f̄ ⊇ f̄(ι(X)) = (σ(f̄) ◦ ι)(X) = f(X) = X,
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and since im f̄ is a subgroup of G, it follows that im f̄ ⊇ 〈X〉 = G, that is,
f̄ is surjective, as desired.

20.6 Initial/Terminal object

The reader might have been struck by the similarity among the statements
(and proofs) of uniqueness up to equivalence of products, coproducts, and
free objects (see 15.5, 15.6, 20.4). In this section, we discuss the unifying
notions of initial and terminal objects, of which these constructions are
examples.

Let D be a category. An object I of D is an initial object if for each
object A of D there exists a unique morphism I → A. An object T of D is a
terminal object if for each object A of D there exists a unique morphism
A → T . (Initial objects and terminal objects are sometimes referred to
collectively as “universal objects” with the former being called universally
repelling and the latter being called universally attracting.)

Theorem.

(i) If I and I ′ are two initial objects of D, then there exists a unique
equivalence I → I ′.

(ii) If T and T ′ are two terminal objects of D, then there exists a unique
equivalence T → T ′.

Proof. (i) Let I and I ′ be two initial objects of D. Since I is an initial
object, there exists a unique morphism f : I → I ′, and since I ′ is an initial
object, there exists a unique morphism g : I ′ → I. This gives a morphism
g ◦ f : I → I. But 1I : I → I is also a morphism. By the uniqueness
statement in the definition of initial object, we get g ◦ f = 1I . Similarly,
f ◦ g = 1I′ . Therefore, f : I → I ′ is an equivalence. As noted earlier, f is
the unique morphism from I to I ′, so it must be the unique equivalence as
well.

The proof of (ii) is similar.

Here we show the connection with free objects. Let (C, σ) be a concrete
category and let X be a set. Form a new category D:

• objects are pairs (A,α) with A ∈ obj(C) and α : X → σ(A) a map,

• morphisms from the object (A,α) to the object (B, β) are morphisms
f : A→ B in C such that σ(f) ◦ α = β,
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and composition is the same as the composition in C. It is trivial to check
that this is indeed a category.

Let (F, ι) and (F ′, ι′) be free objects on X in C. By the definition of free
object, these are both initial objects of D. Therefore, the theorem says that
there exists a unique equivalence (F, ι) → (F ′, ι′) in D, which is the same
as saying that there exists a unique equivalence f : F → F ′ in C such that
σ(f) ◦ ι = ι′ (cf. 20.4).

This point of view has the advantage of consolidating the two things
that make up a free object, an object F and a map ι, into a single object
(F, ι). Of course, we pay the price of having to work in the category D,
which is more complicated than the category C. However, one can argue
that, as far as the notion of freeness on the set X is concerned, D is the
correct category to work in. For instance, when we said earlier that free
objects were unique up to equivalence we had to say “in a strong sense” to
refer to the fact that there is a unique equivalence that is compatible with
the related maps. However, just ordinary equivalence (of initial objects) in
the category D entails this strong sense automatically.

One can mimic the construction of the category D above to create a cat-
egory in which a coproduct (C, {ιi}) is an initial object, and then appeal to
the theorem on uniqueness of initial objects to get the strong sense of unique-
ness of coproducts stated in 15.6 (see Exercise 6). A similar construction
can be done for products; they end up being terminal objects.

Initial and terminal objects are ubiquitous throughout mathematics.
They can be discovered almost anywhere it makes sense to talk about an
optimal thing. For instance, the greatest common divisor of a finite set
of natural numbers is an optimal choice from among all divisors of every
number in the set. A greatest common divisor is a terminal object in an
appropriate category. Here is a short list of other notions that can be char-
acterized as either initial or terminal objects in appropriate categories:

• least common multiple of a finite set of natural numbers,

• supremum of a subset of R,

• infimum of a subset of R,

• empty set,

• trivial group,

• quotient group,
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• closure of a subset of Rn,

• interior of a subset of Rn,

• universal covering space of a locally connected topological space,

• universal enveloping algebra of a Lie algebra,

• tensor product of modules,

• completion of a metric space.

20 – Exercises

1. For a group G, put F (G) = G/G(1), where G(1) is the commutator
subgroup of G. Define F (ϕ) for ϕ a homomorphism in such a way
that F : Grp→ Ab becomes a functor.

2. A contravariant functor is defined just like a functor, except with
conditions

• A f→ B in C implies F (B)
F (f)−→ F (A) in D,

• F (1A) = 1F (A) for each A ∈ obj(C),

• F (g ◦ f) = F (f) ◦ F (g) for all f, g ∈ mor(C) with t(f) = s(g),

so a contravariant functor reverses the direction of arrows. An ordinary
functor is called a covariant functor if it needs to be distinguished
from a contravariant functor.

Modify the definition of the power set functor (see 20.3) to obtain a
contravariant functor Set→ Set.

3. Let C be a category and let B be an object of C. By analogy with
the covariant mor functor of 20.3, define a contravariant mor functor
FB : C→ Set induced by B and verify the axioms.

4. For a vector space V over a field F , put V ∗ = mor(V, F ) (= set of
morphisms in VecF ). Define a contravariant functor D:VecF → VecF
with object map V 7→ V ∗. (Hint: See Exercise 3.)

5. Let (C, σ) be a concrete category, let X be a set, and let (F, ι) be free
on X in C. Assume that there exists an object A of C with |σ(A)| > 1.

(a) Prove that ι is injective.
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(b) Give an example to show that ι need not be injective if no such
object A exists.

6. Let {Ai}i∈I be a family of objects of a category C. Construct a cate-
gory D in which a coproduct of the family is an initial object.

7. Let S be a finite set of natural numbers. A greatest common divisor
(gcd) of S is a natural number g having the properties:

• g | s for all s ∈ S,

• if d ∈ N has the property that d | s for all s ∈ S, then d | g.

Construct a category in which a gcd of S is a terminal object and use
uniqueness up to equivalence of terminal objects to prove uniqueness
of a gcd.

8. Let G be a group and let N be a normal subgroup of G. Construct a
category in which G/N (or rather G/N paired with a certain homo-
morphism) is an initial object. (Hint: Fundamental Homomorphism
Theorem.)
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21 Group presentation

21.1 Motivation

We begin with a simple example. Let F = 〈g〉 be an infinite (multiplicative)
cyclic group. It is easy to see that F is free on the set {g} (with ι taken to
be the inclusion map). Let N = 〈g6〉 and for x ∈ F , let x denote the image
of x under the canonical epimorphism F → F/N =: F . Then

g6 = g6N = N = e,

so, intuitively, the effect of passing to the quotient F/〈g6〉 is to make g6

equal to the identity. We express this by writing

F = 〈g | g6 = e〉.

and by saying that F has the presentation (g | g6 = e).
The group F is the most general group with one generator having sixth

power the identity in the sense that any other such group is a homomorphic
image of F . (This follows from von Dyck’s theorem (21.4), which follows
almost immediately from the Fundamental Homomorphism theorem.) Since
F is isomorphic to Z6 this fact provides one way (albeit too fancy) of seeing
that there are epimorphisms Z6 → A for A = Z6, Z3, Z2, and {e}.

21.2 Generators and relations

Let X be a set and let F = F (X) be the free group on X. Let R be a set of
reduced words relative to X as in 20.5 and let N be the normal subgroup
of F generated by R (so N is the intersection of all normal subgroups of F
containing the set R). We define

〈X |R = e〉 := F/N,

where R = e denotes the set of all expressions r = e (r ∈ R). This is the
group with generators X and relations R = e.

For example, given a natural number n,

〈a, b | an = e, b2 = e, abab = e〉

denotes the quotient of the free group on {a, b} by the normal subgroup
generated by {an, b2, abab}. It turns out that this group is isomorphic to the
dihedral group D2n of order 2n (see Exercise 1).
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This group is also sometimes written

〈a, b | an, b2, aba = b−1〉.

The convention for notations appearing to the right of the bar (|) is that all
equations are to be viewed in the form r = e by applying standard group
operations (so aba = b−1 means abab = e), and any expression not involving
an equality sign is understood to equal e (so an means an = e and b2 means
b2 = e).

It should be pointed out that considerable collapsing can occur. For
instance, in the group 〈a, b | ab−1 = e〉 we have a = b (meaning aN = bN),
so the two distinct (reduced) words a and b collapse to the same group
element after passing to the quotient F/N . The “word problem” is the
problem of finding a general algorithm for deciding when two words collapse
to the same group element. It was shown by Novikov in 1955 that the word
problem is unsolvable–even when both X and R are assumed to be finite.

21.3 Presentation of a group

Let X be a set and let R be a set of reduced words on X. A group G has
presentation (X |R = e) if G ∼= 〈X |R = e〉.

(We draw a distinction between the ordered pair (X |R = e) and the
group 〈X |R = e〉 while most authors use one or the other of these notations
to mean simultaneously the ordered pair and the group.)

Theorem. Every group has a presentation.

Proof. Let G be a group. By Section 20.5, if F is the free group on any
generating set X (e.g., X = G) of G, then there exists an epimorphism
ϕ : F → G. For any set R of generators of kerϕ (e.g., R = kerϕ) we have

G = imϕ ∼= F/ kerϕ = 〈X |R = e〉,

so that G has presentation (X |R = e).

The generating sets X and R are generally chosen to be as small and
natural as possible.

21.4 Von Dyck’s theorem

Let X be a set, let R be a set of reduced words on X, let H be a group, and
let f : X → H be a map. We say that the relations R = e are satisfied
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in H relative to f if f̄(r) = e for all r ∈ R, where f̄ : F (X) → H is the
homomorphism induced by f . More simply put, the relations R = e are
satisfied in H if they are valid after replacing each x ∈ X by its image
f(x) ∈ H (and replacing the identity e of F (X) by the identity e of H).

Theorem (von Dyck). Let G be a group with presentation (X |R = e).
If the relations R = e are satisfied in H relative to f : X → H, and
H = 〈f(X)〉, then there exists an epimorphism G→ H.

Proof. Assume that the relations R = e are satisfied in H relative to f :
X → H, and that H = 〈f(X)〉. With ι : X → F (X) =: F denoting the
natural inclusion, we have f̄ ◦ ι = f . Therefore, im f̄ ⊇ f̄(ι(X)) = f(X),
and, since f(X) generates H, it follows that f̄ is surjective.

Now ker f̄ is a normal subgroup of F containing R, so ker f̄ ⊇ N , where
N is the normal subgroup of F generated by R. By the fundamental homo-
morphism theorem (8.7), there exists a homomorphism ϕ : F/N → H such
that ϕ ◦ π = f̄ , where π : F → F/N is the canonical epimorphism. Since f̄
is surjective, ϕ is as well. Finally, since G has presentation (X |R = e), we
have G ∼= 〈X |R = e〉 = F/N , so ϕ can be composed with an isomorphism
to get an epimorphism G→ H, as desired.

21 – Exercises

1. Prove that the dihedral group D2n has the presentation (a, b | an =
e, b2 = e, abab = e). (Hint: Prove that every element in this presenta-
tion can be written in the form aibj with 0 ≤ i < n, 0 ≤ j < 2. Use
the theorem of von Dyck.)
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Appendix

A Writing proofs

A.1 Strings of relations

In a string of relations, the main news value should appear at the ends of
the string and all of the intermediate steps should be easily verifiable.

• If r > 2, then r2 + r − 6 = (r + 3)(r − 2) > 0 (r ∈ R).

The point being made is that if r is greater than 2, then r2 + r − 6 is
positive. The equality r2+r−6 = (r+3)(r−2) is verified by multiplying
out the right hand side; the inequality (r + 3)(r − 2) > 0 follows from
the fact that both factors are positive under the assumption r > 2.

• (2 + 3)2 = 52 = 25 6= 13 = 4 + 9 = 22 + 32.

This says that (2 + 3)2 6= 22 + 32.

• 1
2 + 2

3 −
1
4 = 6

12 + 8
12 −

3
12 = 11

12 /∈ Z.

This says that 1
2 + 2

3 −
1
4 is not an integer. It is confusing to the reader

if this point is made by writing 11
12 = 6

12 + 8
12 −

3
12 = 1

2 + 2
3 −

1
4 /∈ Z.

In working from left to right, he can easily check each step except for
the last, 1

2 + 2
3 −

1
4 /∈ Z. For this, he has to work backwards to see that

1
2 + 2

3 −
1
4 equals 11

12 which is not an integer.

A.2 If P, then Q.

To prove a statement of the form “If P , then Q” (which is the same as “P
implies Q”), assume that P is true and show that Q is true.

• Let a, b, c ∈ R. If a < b and c < 0, then ca > cb.

Proof: Assume that a < b and c < 0. Since a < b, we have a− b < 0.
Therefore, ca− cb = c(a− b) > 0. Hence, ca > cb, as desired.

A.3 P if and only if Q

A statement of the form “P if and only if Q” is a combination of the two
statements “If P , then Q” and “If Q, then P ,” so it is often written with
a double implication symbol: “P ⇔ Q.” To prove such a statement, take
each implication separately and proceed as in A.2.
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• For r ∈ R, r2 − 2r = −1 if and only if r = 1.

Proof: Let r ∈ R.

(⇒) Assume r2 − 2r = −1. Then (r − 1)2 = r2 − 2r + 1 = 0, which
implies r − 1 = 0. Hence, r = 1.

(⇐) Assume r = 1. Then r2 − 2r = 12 − 2(1) = −1.

It is common to use (⇒) and (⇐) as above to introduce the particular
implication being proved. Incidentally, you should convince yourself that
(⇐) corresponds to the statement “P if Q” while (⇒) corresponds to the
statement “P only if Q.”

A.4 Counterexample

To show that a statement involving “for every” is false, provide a single,
explicit counterexample.

• For every positive real number r, we have r3 > r2.

This statement is false, for if r = 1
2 , then r3 = 1

8 6>
1
4 = r2.

I could also have said that the statement is false, for if r is any real
number less than 1, then r3− r2 = r2(r− 1) < 0, whence r3 < r2. However,
the explicit counterexample above is preferable to this argument in that it
is easier to understand and it says just what needs to be said.

A.5 Showing “there exists”

To prove a statement involving “there exists,” just exhibit a single such
object and show that it satisfies the stated property.

• There exists an r ∈ R satisfying r2 + r − 12 = 0.

Proof: Let r = 3. Then, r2 + r − 12 = 32 + 3− 12 = 0.

Note that I did not tell the reader how I came up with an r that works. There
is no obligation to reveal the thought process that leads to the insight. In
fact, doing so risks confusing the reader since it is unexpected. Also, I did
not include that r = −4 also works since exhibiting a single r sufficed.
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A.6 Showing “for every”

To prove a statement involving “for every,” start with an arbitrary such
object and show that it satisfies the given property.

• For every r ∈ R with r ≥ 3, we have r2 − 2r + 1 ≥ 4.

Proof: Let r ∈ R with r ≥ 3. Then r2−2r+ 1 = (r−1)2 ≥ (3−1)2 =
4.

The first sentence of the proof means “Let r denote an arbitrary (i.e.,
any old) real number greater than or equal to 3.”

A.7 Proof by contradiction

There is a method for proving a statement called “Proof by contradiction”
which is sometimes useful. To use this method, one assumes that the given
statement is false and then proceeds to derive a contradiction. The con-
tradiction signals the presence somewhere of an invalid step. Therefore,
provided all the other steps are valid, one can conclude that the initial as-
sumption was not correct, which is to say that the given statement is in fact
true.

• There are infinitely many prime numbers. (A prime number is an
integer greater than 1 that is evenly divisible by no positive integers
except 1 and itself (e.g., 2, 3, 5, 7, 11, . . . ).)

Proof: Suppose the statement is false. In other words, suppose there
are only finitely many primes. We may enumerate them: p1, p2, . . . , pn.
Consider the number s := p1p2 · · · pn + 1. Now s is an integer greater
than 1, so it must be divisible by some prime, say pi. This means
that s = pim for some integer m. But then, 1 = s − p1p2 · · · pn =
pi(m − p1p2 · · · p̂i · · · pn) where the symbol p̂i means “delete pi.” The
expression in the parentheses is just some integer and, since it is not
possible to multiply the prime pi by another integer and get 1, this
is an obvious contradiction. Hence, our original assumption is wrong,
that is, there are infinitely many prime numbers.

This is essentially Euclid’s famous proof of the infinitude of primes.

A.8 Contrapositive

A statement of the form “If P , then Q” is logically equivalent to the state-
ment “If not Q, then not P” meaning that the first statement is true if and
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only if the second statement is true (you should be able to convince yourself
that this is the case). This second statement is called the contrapositive
of the first. Sometimes, proving the contrapositive of a statement is easier
than proving the statement itself.

• If r 6= s, then 2r + 3 6= 2s+ 3 (r, s ∈ R).

Proof: We prove the contrapositive: If 2r + 3 = 2s + 3, then r = s.
Assume 2r + 3 = 2s + 3. Subtracting 3 from both sides and dividing
through by 2 gives r = s, as desired.

Occasionally, people give a proof by contradiction (see A.7) of a statement
that can be established more directly by proving its contrapositive. For
example, to prove the above statement by contradiction, we would start off
assuming that there exist r, s ∈ R such that r 6= s and 2r + 3 = 2s + 3.
Then, as above, we would obtain r = s, contradicting that r 6= s. This
proof is valid, but it is not as direct as the first proof. When a proof by
contradiction ends up contradicting one of the initial assumptions, as in this
case, it can usually be recast using the contrapositive. (Note that this was
not the case in the example worked for A.7.)

A.9 Negation

In order to formulate the contrapositives of statements or to give proofs by
contradiction, one needs to be able to negate statements. Usually, this is
easy; for instance, the negative of a = b is a 6= b. However, more complicated
statements require some thought. Logicians have formal rules that can be
used to accurately negate extremely complex statements, but since most
statements occurring in mathematics have very simple logical structures,
mathematicians tend not to use the formulas relying instead on their own
reasoning. Statements involving “for every” sometimes cause problems, so
here is an example.

• ab = ba for every a, b ∈ G.

The negative is “There exist a, b ∈ G such that ab 6= ba” (not “ab 6= ba
for every a, b ∈ G”).

A.10 Variable scope

The “scope” of a variable in a proof refers to the portion of the proof that
starts where the variable is introduced and ends where the variable no longer
has meaning.
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Generally, if a variable x is introduced with “If x. . . ” or “For every
x. . . ,” then that variable (and every variable that depends on it), ceases to
have meaning at the end of the sentence. Such a variable x is said to have
“local scope.”

On the other hand, a variable x introduced using “Let x. . . ” or “There
exists x. . . ” has meaning all the way to the end of the proof. Such a variable
is said to have “global scope.”

• If n is an even integer, then n = 2m for some integer m. Therefore,
m = n/2.

(Incorrect. Due to the conditional “If . . . ” the variable n has no
meaning past the first sentence. Since m depends on this n, it too has
no meaning past the first sentence.)

• Let n be an even integer. Then n = 2m for some integer m. Therefore,
m = n/2.

(Correct. The phrase “Let n be an even integer” fixes an arbitrary even
integer, and from that point on n refers to that fixed even integer. The
m in the next sentence is chosen to satisfy n = 2m, so it too continues
to have meaning from that point on.)

• For every odd integer n, the integer n+1 is even. Therefore, n+1 = 2m
for some m ∈ Z.

(Incorrect. Due to the quantifier “For every,” n ceases to have meaning
past the first sentence.)

• Let n be an odd integer. Then n+ 1 is even, so n+ 1 = 2m for some
integer m. Therefore, m = (n+ 1)/2.

(Correct. Both n and m have the indicated meaning to the end of the
proof, unless the meaning is overwritten by a new statement, such as
“Let n be an even integer.”)
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