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Chapter 1. Metric Spaces

1. Definition and Examples.
As the course progresses we will need to review some basic notions about sets and

functions. We begin with a little set theory.
Let S be a set. For A,B ⊆ S, put

A ∪B := {s ∈ S | s ∈ A or s ∈ B}
A ∩B := {s ∈ S | s ∈ A and s ∈ B}
S −A := {s ∈ S | s /∈ A}

1.1 Theorem. Let A,B ⊆ S. Then S − (A ∪B) = (S −A) ∩ (S −B).

Exercise 1. Let A ⊆ S. Prove that S − (S −A) = A.

Exercise 2. Let A,B ⊆ S. Prove that S − (A ∩B) = (S −A) ∪ (S −B). (Hint: Either
prove this directly as in the proof of Theorem 1.1, or just use the statement of Theorem
1.1 together with Exercise 1.)

Exercise 3. Let A,B, C ⊆ S. Prove that A M C ⊆ (A M B) ∪ (B M C), where
A M B := (A ∪B)− (A ∩B).

1.2 Definition. A metric space is a pair (X, d) where X is a non-empty set, and d is a
function d : X ×X → R such that for all x, y, z ∈ X

(1) d(x, y) ≥ 0,
(2) d(x, y) = 0 if and only if x = y,
(3) d(x, y) = d(y, x), and
(4) d(x, z) ≤ d(x, y) + d(y, z) (“triangle inequality”).

In the definition, d is called the distance function (or metric) and X is called the
underlying set.

1.3 Example. For x, y ∈ R, set d(x, y) = |x− y|. Then (R, d) is a metric space.

1.4 Example. Let X be a non-empty set. For x, y ∈ X, set d(x, y) =
{

0 x = y,

1 x 6= y.
. Then

(X, d) is a metric space. (d is called the discrete metric on X.)

1.5 Example. Let X be the set of all continuous functions f : [a, b] → R. For f, g ∈ X, set
d(f, g) =

∫ b

a
|f(t)− g(t)| dt. Then (X, d) is a metric space.

1.6 Example. Let p be a fixed prime number. For m,n ∈ Z set

d(m, n) =
{

0 m = n,

p−t m 6= n,

where m − n = ptk with k an integer that is not divisible by p. Then (Z, d) is a metric
space.
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Exercise 4. Let X be the collection of the interiors of those rectangles in R2 having
sides parallel to the coordinate axes. For A,B ∈ X, let d(A,B) denote the area of A M B.
Prove that (X, d) is a metric space. (Hint: Use Exercise 3.)

For sets X1, . . . , Xn, define

n∏

i=1

Xi := {(x1, . . . , xn) |xi ∈ Xi}.

This set is called the Cartesian product of X1, . . . , Xn. Sometimes it is written X1×· · ·×Xn.

Exercise 5. Let Rn := R× · · · × R (n factors). For x, y ∈ Rn, c ∈ R set

x + y = (x1 + y1, . . . , xn + yn),

cx = (cx1, . . . , cxn),
x · y = x1y1 + · · ·+ xnyn,

‖x‖ = (x2
1 + · · ·+ x2

n)1/2

Prove the following:
a. x · (y + z) = x · y + x · z.
b. (cx) · y = c(x · y).
c. x ·y ≤ ||x|| ||y|| (Hint:

∥∥ ‖y‖x−‖x‖y
∥∥2 ≥ 0. Use the fact that ‖z‖2 = z ·z together

with (a) and (b) to expand the left hand side.)
d. ||x + y|| ≤ ||x||+ ||y|| (Hint: Square both sides and use (c).)

Exercise 6. For x, y ∈ Rn, set d(x, y) =
[ ∑n

i=1(xi − yi)2
]1/2. Prove that (Rn, d) is

a metric space. (The function d is called the Euclidean metric on Rn.) (Hint: For the
triangle inequality, note that d(x, z) = ‖x− z‖. Use Exercise 5(d).)

1.7 Theorem. Let (X1, d1), . . . , (Xn, dn) be metric spaces and let X =
n∏

i=1

Xi. For

x, y ∈ X, set d(x, y) = max{di(xi, yi) | 1 ≤ i ≤ n}. Then (X, d) is a metric space.

1.8 Corollary. For x, y ∈ Rn, set ρ(x, y) = max{|xi − yi| | 1 ≤ i ≤ n}. Then (Rn, ρ)
is a metric space.

The function ρ is called the square metric on Rn.

2. Continuous Functions.

2.1 Definition. Let (X, d) and (Y, d′) be metric spaces. A function f : X → Y is
continuous at the point a ∈ X if for each ε > 0, there exists a δ > 0 such that whenever
x ∈ X satisfies

d(x, a) < δ,



3

then f(x) satisfies
d′(f(x), f(a)) < ε.

The function f is continuous if it is continuous at each point of X.

In the case X = Y = R (usual metric), we have d(x, a) = |x − a| and d′(f(x), f(a)) =
|f(x)− f(a)|, so this definition of continuity agrees with the usual definition.

2.2 Example. Given a fixed c ∈ Y , the constant function f : X → Y given by f(x) = c
(x ∈ X) is continuous.

2.3 Example. The function f : R → R given by f(x) =
{

0 x = 0,

x/|x| x 6= 0,
is discontinuous

(i.e., not continuous).

2.4 Example. Let (X, d) be a metric space. The identity function f : X → X given by
f(x) = x is continuous.

2.5 Example. The function f : R2 → R given by f(x1, x2) = x1 + x2 is continuous where
R has the usual metric and R2 has the square metric.

Exercise 7. Let a, b ∈ R. Prove that the linear function f : R→ R given by f(x) = ax+b
is continuous. (Hint: For the case a = 0 use Example 2.2.)

Exercise 8. Let (X, d) be the metric space defined in Example 1.5. Prove that the
function F : X → R given by F (f) =

∫ b

a
f(t) dt is continuous where R has the usual

metric.

Let X, Y, Z be sets and let f : X → Y and g : Y → Z be functions. The composition of
f and g is the function g ◦ f : X → Z given by (g ◦ f)(x) = g(f(x)).

2.6 Theorem. Let (X, d), (Y, d′), (Z, d′′) be metric spaces. If f : X → Y and g : Y →
Z are continuous, then so is g ◦ f : X → Z.

Exercise 9. It is shown in calculus that the function f : R → R given by f(x) = x2 is
continuous. Assuming this, prove that the function g : R→ R given by g(x) = x4 +2x2 +1
is also continuous.

3. Limit of a Sequence.

3.1 Definition. Let (X, d) be a metric space and let (an) = (a1, a2, . . . ) be a sequence of
elements of X. An element a of X is called the limit of the sequence (an) if for each ε > 0
there exists a positive integer N such that d(an, a) < ε for all n > N . In this case we say
that the sequence converges to a and write limn an = a.

In the case X = R (usual metric), we have d(an, a) = |an− a|, so this definition of limit
agrees with the usual definition.

Exercise 10. Prove that a sequence can have at most one limit.
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3.2 Example. Let an = 1/n ∈ R (usual metric). Then limn an = 0.

3.3 Example. Let (Z, d) be the metric space of Example 1.6 relative to the fixed prime
number p. We have limn pn = 0.

Exercise 11. Let (an) and (bn) be sequences in R (usual metric) and assume that
limn an = a and limn bn = b. Prove that limn(an + bn) = a + b.

Exercise 12. Let (X, d) be the metric space of Example 1.5 and let fn ∈ X be given
by fn(x) = x/n. Prove that limn fn = z, where z denotes the zero function (z(x) = 0
∀ a ≤ x ≤ b).

3.4 Theorem. Let (X, d) and (Y, d′) be metric spaces. A function f : X → Y is
continuous at the point a ∈ X if and only if for each sequence (an) in X converging to a,
we have limn f(an) = f(a).

Exercise 13. Prove that limn
1 + 2n2 + n4

n4
= 1 by using only what we have shown in

this course. (Hint: Use Exercise 9, Example 3.2, and Theorem 3.4.)

4. Open Sets.

Let f : X → Y be a function. We say that

f is injective if f(x1) = f(x2) implies x1 = x2 (xi ∈ X),

f is surjective if for each y ∈ Y , there exists x ∈ X such that f(x) = y,

f is bijective if it is both injective and surjective.

Given A ⊆ X, the subset
f(A) := {f(a) | a ∈ A}

of Y is called the image of A under f . Given B ⊆ Y , the subset

f−1(B) := {x ∈ X | f(x) ∈ B}
of X is called the inverse image of B under f .

If f is bijective, then there exists an inverse function f−1 : Y → X which sends f(x) to x,
and in this case f−1(B) coincides with the image of B under f−1 as the notation suggests.
However, the inverse image of B under f is defined even when the inverse function f−1 is
not.

Exercise 14. Let f : X → Y be a function and let A ⊆ X, B ⊆ X. Prove the following:
a. A ⊆ f−1(f(A)) with equality if f is injective.
b. B ⊇ f(f−1(B)) with equality if f is surjective.

4.1 Definition. Let (X, d) be a metric space. For a ∈ X and ε > 0, the set

Bε(a) := {x ∈ X | d(x, a) < ε}
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is called the open ball about a of radius ε (or the ε-ball about a).

The following theorems express the notions of continuity and limit using this new no-
tation.

4.2 Theorem. Let (X, d) and (Y, d′) be metric spaces. A function f : X → Y is
continuous at a ∈ X if and only if for each ε > 0 there exists δ > 0 such that f(Bδ(a)) ⊆
Bε(f(a)) (or equivalently, Bδ(a) ⊆ f−1[Bε(f(a))]).

4.3 Theorem. Let (X, d) be a metric space and let (an) be a sequence in X. Then
limn an = a if and only if for each ε > 0 there exists a positive integer N such that
an ∈ Bε(a) for all n > N .

For the rest of this section, (X, d) denotes a metric space.

4.4 Definition. A subset U of X is open if for each a ∈ U there exists ε > 0 such that
Bε(a) ⊆ U .

4.5 Example. The open subsets of R (usual metric) are just the unions of open intervals
(e.g., (−3,−1) ∪ (40/7,∞)). The set [2, 5) is not open in R.

4.6 Example. The set of points enclosed by a closed curve (not including the curve itself)
is an open subset of R2 (with either the Euclidean metric or the square metric). The set
of points lying outside a closed curve (again, not including the curve) is also open.

Exercise 15. Given a ∈ X and ε > 0, prove that Bε(a) is open.

Exercise 16. Let (X, d) be the metric space of Example 1.4. Prove that every subset of
X is open.

4.7 Theorem. Let (X, d) and (Y, d′) be metric spaces. A function f : X → Y is
continuous if and only if f−1(U) is open for each open subset U of Y .

Let I be a set. Suppose that for each α ∈ I we have a set Aα. Then {Aα}α∈I is called
an indexed family of sets and I is called the index set.

Extending the concepts of union and intersection, we define

∪αAα : = {a | a ∈ Aα for some α ∈ I}
∩αAα : = {a | a ∈ Aα for all α ∈ I}

Exercise 17. Let f : X → Y be a function and let {Aα}α∈I be an indexed family of
subsets of X.

a. Prove that f(∪αAα) = ∪αf(Aα).
b. Prove that f(∩αAα) ⊆ ∩αf(Aα) with equality if f is injective.
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4.8 Theorem.

(1) X is open,
(2) ∅ is open,
(3) If U1, . . . , Un ⊆ X are open, then so is U1 ∩ · · · ∩ Un,
(4) If {Uα}α∈I is a family of open subsets of X, then ∪αUα is open.

4.9 Example. For each positive integer n, set Un := (−1/n, 1/n) ⊆ R. Then ∩nUn = {0},
which is not open. This shows that we can only allow finitely many Ui in part (3) of the
Theorem.

Exercise 18. Let U be a nonempty subset of X. Prove that U is open if and only if it
equals a union of (possibly infinitely many) open balls.

5. Closed Sets.

Let (X, d) be a metric space.

5.1 Definition. A subset A of X is closed if X −A is open.

Riddle: How is a subset of X different from a door? Answer: It is possible for a subset
of X to be neither closed nor open (e.g., [0, 1) ⊆ R (usual metric)). It is also possible for
a subset of X to be both closed and open (clopen) (e.g., ∅ is clopen, as is X).

5.2 Example. The subset (−∞,−3] ∪ [−1, 40/7] of R (usual metric) is closed.

5.3 Example. The set of points enclosed by a closed curve (including the curve) is a closed
subset of R2 (either metric), as is the set of points outside a closed curve (including the
curve).

Exercise 19. Let A be a subset of X. A point b of X is a limit point of A if each open
ball about b contains a point of A different from b.

a. Prove that b is a limit point of A only if there exists a sequence (an) in A that
converges to b.

b. Prove that A is closed if and only if it contains all its limit points.

5.4 Theorem. A subset A of X is closed if and only if for each sequence (an) in A
that converges to a ∈ X, we have a ∈ A.

Exercise 20. Let (X, d) and (Y, d′) be metric spaces. Prove that a function f : X → Y
is continuous if and only if f−1(A) is closed for each closed A ⊆ Y .

5.5 Theorem.

(1) X is closed.
(2) ∅ is closed.
(3) If A1, . . . , An ⊆ X are closed, then so is A1 ∪ · · · ∪An.
4. If {Aα}α∈I is a family of closed subsets of X, then ∩αAα is closed.



7

Chapter 2. Topological Spaces

1. Definition and Examples.

1.1 Definition. A topological space is a pair (X, T ) where X is a nonempty set and T is
a collection of subsets of X such that

(1) X ∈ T ,
(2) ∅ ∈ T ,
(3) If U1, . . . , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T ,
(4) If {Uα}α∈I is an indexed family with Uα ∈ T for each α ∈ I, then ∪αUα ∈ T .

The set X is called the underlying set; its elements are called points. The collection T
is called the topology on X; its elements are called open sets.

1.2 Example. Let (X, d) be a metric space and let T be the collection of all open sets (as
defined in 4.4 of Chapter 1). Then, according to 4.8 of Chapter 1, (X, T ) is a topological
space. T is called the topology induced by the metric d.

1.3 Example. Let X be a nonempty set and let T be the collection of all subsets of X.
Then (X, T ) is a topological space. T is called the discrete topology.

1.4 Example. Let X be a nonempty set and let T = {X, ∅}. Then (X, T ) is a topological
space. T is called the indiscrete topology.

1.5 Example. Let X = {a, b, c} and let T = {∅, {b}, {a, b}, {b, c}, {a, b, c}}. Then (X, T ) is
a topological space. (Note that if we remove the set {b} from T , then (X, T ) is no longer
a topological space since in that case {a, b} ∩ {b, c} = {b} /∈ T and 1.1(3) is not satisfied.)

1.6 Example. Let X = N := {1, 2, 3, . . . } and for each n ∈ N set Un = {n, n+1, n+2, . . . }.
Let T = {∅, Un |n ∈ N}. Then (X, T ) is a topological space.

1.7 Example. Let X be a nonempty set and let T = {U ⊆ X |U = ∅ or |X − U | < ∞}.
Then (X, T ) is a topological space. T is called the finite complement topology.

Exercise 21. Let (X, T ) be a topological space and let S ⊆ X. Assume that for each
s ∈ S there is an open set U such that s ∈ U ⊆ S. Prove that S is open.

For the rest of the section, (X, T ) denotes a topological space.

1.8 Definition. (X, T ) is metrizable if there exists a metric d on X that induces T .
(Recall from Example 1.2 that d induces T if the elements of T are precisely the open sets
as defined for the metric space (X, d). In other words, a subset U of X is in T if and only
if for each a ∈ U , there exists ε > 0 such that Bε(a) ⊆ U .)

1.9 Example. If a nonempty set X is given the discrete topology T of Example 1.3, then
the toplogical space (X, T ) is metrizable.

1.10 Theorem. If (X, T ) is metrizable, then for each x, y ∈ X with x 6= y, there exist
open sets U, V ∈ T such that x ∈ U , y ∈ V , and U ∩ V = ∅.
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1.11 Example. The topological space of Example 1.5 is not metrizable.

Exercise 22. Examine the topological spaces of Examples 1.4, 1.6, and 1.7, and decide
under what circumstances, if any, each is metrizable.

The following exercise shows that it is possible for two different metrics on a set to
induce the same topology.

Exercise 23. Let d and ρ denote the Euclidean metric and the square metric, respectively,
on R2 and let Td and Tρ denote the induced topologies (see 1.8 for the precise meaning of
“induced”). Prove that Td = Tρ.

1.12 Definition. A subset A of X is closed if X −A is open.

Exercise 24. Prove that U ⊆ X is open if and only if X − U is closed.

1.13 Theorem.

(1) X is closed.
(2) ∅ is closed.
(3) If A1, . . . , An ⊆ X are closed, then so is A1 ∪ · · · ∪An.
(4) If {Aα}α∈I is a family of closed subsets of X, then ∩αAα is closed.

1.14 Definition. Let x ∈ X. Any open set containing x is called a neighborhood of x.

The following definition generalizes the metric space notion of “limit point” given in
Exercise 19.

1.15 Definition. Let S be a subset of X. A point a ∈ X is a limit point of S if every
neighborhood of a contains a point of S other than a.

1.16 Theorem. Let A be a subset of X. Then A is closed if and only if it contains all
its limit points.

2. Closure, Interior, Boundary.

Let (X, T ) be a topological space.

2.1 Definition. Let S be a subset of X. The closure S− of S is the intersection of all
closed subsets of X containing S:

S− :=
⋂

A⊇S
A, closed

A.

Note that S− is closed by 1.13(4). In fact, S− can be thought of as the smallest closed
set containing S, for if A is any closed set containing S, then A is one of the sets appearing
on the right in the definition of S− so that A ⊇ S−.
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2.2 Example. Let S = (−1, 1) ⊂ R (usual topology). Then S− = [−1, 1]. More generally, if
S = {x ∈ Rn |x2

1+· · ·+x2
n < 1} ⊂ Rn (usual topology), then S− = {x ∈ Rn |x2

1+· · ·+x2
n ≤

1}.
2.2 Example. Let S = (−1, 1) ⊂ R (usual topology). Then S− = [−1, 1]. More generally, if
S = {x ∈ Rn |x2

1+· · ·+x2
n < 1} ⊂ Rn (usual topology), then S− = {x ∈ Rn |x2

1+· · ·+x2
n ≤

1}.
2.3 Theorem. A subset A of X is closed if and only if A− = A.

Exercise 25. Let S, T ⊆ X.
a. Prove that (S ∪ T )− = S− ∪ T−.
b. Prove that (S ∩ T )− ⊆ S− ∩ T− and give an example to show that equality need

not hold.
c. Prove that (S−)− = S−.

2.4 Theorem. Let S be a subset of X and let S′ denote the set of all limit points of
S. Then S− = S ∪ S′.

Exercise 26. Let P be the collection of all subsets of X. Define functions f, g : P → P
by f(S) = S− and g(S) = X − S. If we start with a set S ∈ P we can apply f and g in
succession to form other sets. For instance, if X = R (usual topology) and S = (0, 1), then

f(S) = [0, 1],

g(f(S)) = (−∞, 0) ∪ (1,∞),

f(g(f(S))) = (−∞, 0] ∪ [1,∞),

g(f(g(f(S)))) = (0, 1) = S.

a. Prove that by starting with S ∈ P and applying f and g in succession (starting
with f , and then again starting with g), no more than 14 different subsets of X
can ever be obtained.

b. Give an example of an S ⊆ R (usual topology) for which 14 different subsets are
actually obtained.

2.5 Definition. Let S be a subset of X. The interior S◦ of S is the union of all open
subsets of X contained in S:

S◦ :=
⋃

U⊆S
U, open

U.

Using an argument similar to that used for closure, we have that S◦ is the largest open
subset of X contained in S.

2.6 Example. If S = {x ∈ Rn |x2
1 + · · ·+ x2

n ≤ 1} ⊂ Rn (usual topology), then S◦ = {x ∈
Rn |x2

1 + · · ·+ x2
n < 1}.
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2.7 Theorem. Let S be a subset of X.

(1) S◦ = X − (X − S)−.
(2) S− = X − (X − S)◦.

Exercise 27. Let S, T ⊆ X.

a. Prove that (S ∩ T )◦ = S◦ ∩ T ◦.
b. Prove that (S◦)◦ = S◦.

(Hint: In both (a) and (b) one could proceed directly, of course, but it would be a lot
more fun to use Theorem 2.7 and Exercise 25.) Incidentally, as one might expect judging
from Exercise 25(b), it is also true that (S ∪ T )◦ ⊇ S◦ ∪ T ◦, with equality not holding in
general.

2.8 Theorem. If S is a subset of X, then S◦ = {a ∈ X |U ⊆ S for some neighborhood
U of a}.

2.9 Definition. Let S be a subset of X. The boundary Sb of S is defined by Sb :=
S− ∩ (X − S)−.

2.10 Example. If S = {x ∈ Rn |x2
1 + · · ·+x2

n < 1} ⊂ Rn (usual topology), then Sb = {x ∈
Rn |x2

1 + · · ·+ x2
n = 1}.

2.11 Theorem. If S is a subset of X, then Sb = S− − S◦.

Exercise 28. A collection {S1, . . . , Sn} of subsets of X is a partition of X if X =
S1∪· · ·∪Sn and Si∩Sj = ∅ for i 6= j. Let S be a subset of X. Prove that {S◦, Sb, (X−S)◦}
is a partition of X. (Hint: You might find Theorem 2.7 useful.)

3. Continuity and Homeomorphism.

Let (X, T ) and (Y, T ′) be topological spaces.

3.1 Definition. A function f : X → Y is continuous if f−1(V ) is open for each open
V ⊆ Y .

According to Theorem 4.7 of Chapter 1, this definition generalizes that of a continuous
function between metric spaces.

Exercise 29. Give an example of a continuous function f : R→ R (usual topology) and
an open subset U of R such that f(U) is not open.

3.2 Theorem. A function f : X → Y is continuous if and only if f−1(B) is closed for
each closed B ⊆ Y .

Let (Z, T ′′) be another topological space.
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3.3 Theorem. If the functions f : X → Y and g : Y → Z are continuous, then so is
the composition g ◦ f : X → Z.

Exercise 30. Prove Theorem 3.3.

3.4 Theorem. A function f : X → Y is continuous if and only if f(S−) ⊆ f(S)− for
each subset S of X.

Let 1X denote the identity function on X. So 1X : X → X is given by 1X(x) = x
(x ∈ X).

3.5 Theorem. A function f : X → Y is bijective if and only if there exists a function
g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y .

Assume f : X → Y is bijective. The function g guaranteed by the theorem is unique; it
is called the inverse of f and is denoted f−1. Note that f−1 is also bijective.

3.6 Definition. (X, T ) and (Y, T ′) are said to be homeomorphic if there exist continuous
functions f : X → Y and g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y . In this case, we
call any such functions f and g homeomorphisms and we write (X, T ) ' (Y, T ′) (or just
X ' Y if the topologies are understood).

According to Theorem 3.5, a homeomorphism is necessarily bijective.

3.7 Example. If (a, b) and (c, d) are two open intervals in R endowed with the usual
topologies, then (a, b) ' (c, d).

3.8 Definition. A function f : X → Y is open if f(U) is open for each open U ⊆ X.

3.9 Theorem. A function f : X → Y is a homeomorphism if and only if it is bijective,
continuous, and open.

Suppose (X, T ) and (Y, T ′) are homeomorphic and let f : X → Y be a homeomorphism.
Since f is a bijection, we can think of it as a renaming function: the element x of X gets
renamed f(x) ∈ Y . In particular, we can think of the set Y as just the set X with elements
renamed. This renaming function is compatible with the topologies in the sense that U
is in T if and only if the renamed elements of U (namely the elements of f(U)) form an
element of T ′. This implies that any property (X, T ) has, that can be expressed entirely
in terms of open sets, (Y, T ′) must also have.

3.10 Theorem. If (X, T ) is metrizable and (X, T ) ' (Y, T ′), then (Y, T ′) is also
metrizable.

3.11 Example. Let (X, T ) be the topological space of Example 1.5 and let T ′ denote the
discrete topology on X. Then (X, T ) 6' (X, T ′).

Incidentally, we can use this example to show that Theorem 3.9 is not valid if we
remove the word “open.” In other words, a bijective continuous function need not be a
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homeomorphism. Indeed, if we view the identity function 1X as a function from (X, T ′)
to (X, T ), then it is bijective and continuous (but not open). Yet the example shows that
it cannot possibly be a homeomorphism.

3.12 Definition. (X, T ) is Hausdorff if for each x, y ∈ X with x 6= y, there exist U, V ∈ T
such that x ∈ U , y ∈ V and U ∩ V = ∅.

According to Theorem 1.10, any metrizable space is Hausdorff. The topological space
of Example 1.5 is not Hausdorff.

Exercise 31. Prove that if (X, T ) is Hausdorff and (X, T ) ' (Y, T ′), then (Y, T ′) is also
Hausdorff. (Warning: There exist Hausdorff spaces that are not metrizable, so Theorem
3.10 is of no use here. However, the techniques used in its proof might be useful.)

4. Subspaces.

Let (X, T ) be a topological space, let Y be a nonempty subset of X, and set TY =
{U ∩ Y |U ∈ T }.

4.1 Theorem. (Y, TY ) is a topological space.

(Y, TY ) is said to be a subspace of (X, T ) and TY is called the topology on Y induced by
T . The elements of TY are said to be open relative to Y .

4.2 Example. Let X = R (usual topology) and let Y = [0, 2] ⊂ R. Then [0, 1) is open
relative to Y since [0, 1) = (−1, 1) ∩ Y and (−1, 1) is open in X.

4.3 Theorem. If ∅ 6= Z ⊆ Y ⊆ X, then (TY )Z = TZ .

Just as we say that a subset of Y is open relative to Y if it is of the form U ∩Y for some
open U ⊆ X, we say that a subset of Y is closed relative to Y if it is of the form A∩ Y for
some closed A ⊆ X. Now, in the topological space (Y, TY ) we already have a notion of a
closed subset, namely, B ⊆ Y is closed if Y −B is in TY . The following theorem says that
these two notions coincide.

4.4 Theorem. A subset of the topological space (Y, TY ) is closed if and only if it is
closed relative to Y .

Exercise 32. Assume Y is an open subset of X and let V ⊆ Y . Prove that V ∈ TY if
and only if V ∈ T .

Exercise 33. Prove that if (X, T ) is Hausdorff, then (Y, TY ) is also Hausdorff.

5. Products.

Before discussing products, we need some preliminaries.
In a metric space (X, d) we can use the open balls to define a topology on X (cf.

Example 1.2). Actually, the metric d is more than we really need for this construction. It
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turns out that if we have a collection B of subsets of X that merely behaves enough like
the collection of open balls, then we can use B to define a topology on X. This is made
more precise in the following theorem.

5.1 Theorem. Let X be a nonempty set and let B be a collection of subsets of X such
that

(1) Each element of X is contained in some element of B,
(2) Given B1, B2 ∈ B and x ∈ B1 ∩B2, there exists B3 ∈ B with x ∈ B3 ⊆ B1 ∩B2.

Let T = TB be the collection of all subsets U of X having the property that for each a ∈ U
there exists B ∈ B such that a ∈ B ⊆ U . Then (X, T ) is a topological space.

The collection B is called a basis for the topology T , and T is said to be induced by B.
Note that B ⊆ T , that is, every basis element is automatically open.

5.2 Example. Let (X, d) be a metric space and let B = {Bε(a) | a ∈ X, ε > 0}. Then B is
a basis for the topology induced by d.

5.3 Example. Let (X, T ) be a topological space and let B = T . Then B is a basis for T .
In other words, TT = T .

5.4 Theorem. Let the notation be as in 5.1. A subset U of X is open (i.e., an element
of T ) if and only if it is a union of elements of B.

Let (X1, T1) and (X2, T2) be topological spaces and set X = X1×X2 := {(x1, x2) |xi ∈
Xi}. Define

B = {U1 × U2 |Ui ∈ Ti}.
It is easily checked that B satisfies conditions (1) and (2) of Theorem 5.1. Therefore,
if we let T = TB be the induced topology, we get a topological space (X, T ) called the
(Cartesian) product of the topological spaces (X1, T1) and (X2, T2). T is called the product
topology.

5.5 Example. Let X1 = X2 = R (usual topology) and let X = X1 × X2 = R2. If we
let Td denote the topology induced by the Euclidean metric d on X and let T denote the
product topology on X, then T = Td. In other words, the product topology on R2 is just
the usual topology.

5.6 Theorem. For any b ∈ X2, we have X1×{b} ' X1 where X1×{b} = {(x1, b) |x1 ∈
X1} ⊆ X is given the subspace topology. (Similarly, {a} ×X2 ' X2 for each a ∈ X1.)

Exercise 34. Prove that the function π1 : X → X1 given by π1((x1, x2)) = x1 is
continuous.

Exercise 35. Prove that a topological space (X, T ) is Hausdorff if and only if the
“diagonal” ∆ := {(x, x) |x ∈ X} is closed in the product X ×X.
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Chapter 3. Connected Spaces

1. Definition and Examples.

Let (X, T ) be a topological space.

1.1 Definition. (X, T ) is not connected if there exist open subsets U and V of X such
that

(1) U, V 6= ∅,
(2) U ∩ V = ∅,
(3) U ∪ V = X.

Otherwise, (X, T ) is connected.
A nonempty subset Y of X is not connected (resp., connected) if (Y, T ′) is not connected

(resp., connected) where T ′ is the subspace topology.

1.2 Example. The subset [0, 1) ∪ (2, 3) of R (usual topology) is not connected, whereas
any interval in R is connected (more about this in the next section).

1.3 Theorem. (X, T ) is connected if and only if X and ∅ are the only clopen subsets
of X.

Exercise 36. Prove Theorem 1.3.

Let (Y, T ′) be another topological space.

1.4 Theorem. Let f : X → Y be continuous. If S is a connected subset of X, then
f(S) is connected.

1.5 Corollary. If (X, T ) is connected and (X, T ) ' (Y, T ′), then (Y, T ′) is connected.

1.6 Theorem. If S is a connected subset of X and S ⊆ T ⊆ S−, then T is connected.

1.7 Lemma. Let Y = {0, 1} (discrete topology). (X, T ) is connected if and only if the
only continuous functions f : X → Y are the constant functions (i.e., f(X) = {0} or
f(X) = {1}).

1.8 Theorem. If (X, T ) and (Y, T ′) are connected, then so is X×Y (with the product
topology).

Exercise 37. Let S, K ⊆ X with S connected, K clopen, and S ∩K 6= ∅. Prove that
S ⊆ K.

Exercise 38. Let S and T be connected subsets of X with S ∩ T 6= ∅. Prove that S ∪ T
is connected. (Hint: Use Theorem 1.3 and Exercise 37.)
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2. Applications to the real line.

2.1 Definition. A subset S of R is an interval if whenever a < b are elements of S and
x ∈ R satisfies a < x < b, then x ∈ S.

2.2 Example. (−∞, 1], (1, 2), {3}, and R are all intervals.

2.3 Theorem. A subset of R is connected if and only if it is an interval.

2.4 Theorem. (Intermediate-Value Theorem) Let f : [a, b] → R be a continuous func-
tion. For each number r between f(a) and f(b), there exists a number c ∈ [a, b] such that
f(c) = r.

2.5 Theorem. (Brouwer’s Fixed-Point Theorem) If f : [0, 1] → [0, 1] is continuous,
then f(c) = c for some c ∈ [0, 1].

3. Path-Connected Spaces.

Let (X, T ) be a topological space.

3.1 Definition. Let a, b ∈ X. A path from a to b is a continuous function f : [0, 1] → X
such that f(0) = a and f(1) = b. The image f([0, 1]) of a path f is a curve.

3.2 Example. The function f : [0, 1] → R2 (usual topology) given by f(t) = (2t− 1, (2t−
1)2) is a path from (−1, 1) to (1, 1).

Let (Y, T ′) be another topological space.

3.3 Lemma. (Pasting Lemma) Let A1, A2 be closed subsets of X, let fi : Ai → Y
(i = 1, 2) be continuous functions and assume f1(a) = f2(a) for every a ∈ A1 ∩ A2. Set
A := A1 ∪A2. The function f : A → Y defined by

f(a) =
{

f1(a), a ∈ A1

f2(a), a ∈ A2

is continuous.

Exercise 39. A relation ∼ on X is an equivalence relation if for all a, b, c ∈ X

(1) a ∼ a (reflexive property),
(2) a ∼ b implies b ∼ a (symmetric property),
(3) a ∼ b, b ∼ c implies a ∼ c (transitive property).

For a ∈ X, the set [a] := {x ∈ X |x ∼ a} is called the equivalence class of a. The distinct
equivalence classes form a partition of X.

For a, b ∈ X, set a ∼ b if there exists a path from a to b. Prove that ∼ is an equivalence
relation on X. (The equivalence classes are called path components.) (Hint: Use 3.3 for
the transitive property.)
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3.4 Definition. (X, T ) is path-connected if for each a, b ∈ X there exists a path from a
to b. A nonempty subset Y of X is path-connected if (Y, T ′) is path-connected where T ′ is
the subspace topology.

3.5 Example. R (usual topology) is path-connected, for if a, b ∈ R, then f : [0, 1] → R
given by f(t) = a + (b − a)t is a path from a to b. More generally, Rn is path-connected
for any n (see Theorem 3.9 below).

3.6 Example. The topological space {0, 1} (discrete topology) is not path-connected by
Lemma 1.7.

3.7 Theorem. If (X, T ) is path-connected and f : X → Y is continuous and surjective,
then Y is path-connected.

Exercise 40. Prove Theorem 3.7 and give an example to show that the statement is
false if f is not surjective.

3.8 Corollary. If (X, T ) is path-connected and (X, T ) ' (Y, T ′), then (Y, T ′) is
path-connected.

3.9 Theorem. If (X, T ) and (Y, T ′) are path-connected, then so is X × Y (product
topology).

3.10 Theorem. If (X, T ) is path-connected, then it is connected.

The following example shows that the converse to Theorem 3.10 does not hold.

3.11 Example. The subspace Y := {(x, sin (1/x) |x > 0} ∪ {(0, 0)} of R2 (usual topology)
is connected but not path-connected.
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Chapter 4. Compact Spaces

1. Definition and Examples.

Let (X, T ) be a topological space.

1.1 Definition. Let S be a subset of X. A collection U = {Uα}α∈I of subsets of X is a
covering of S if ∪αUα ⊇ S. The collection U is open if each Uα is open and it is finite if I
is finite. If J ⊆ I, then U ′ = {Uα}α∈J is a subcollection of U .

1.2 Example. For each n ∈ N, set Un = (−1 + 1/n, 1 − 1/n) ⊆ R. Then U = {Un}n∈N is
an open covering of (−1, 1) ⊂ R. U is also an open covering of [−1/2, 1/2].

1.3 Definition. X is compact if each open covering of X has a finite subcollection that
is also a covering of X. A nonempty subset S of X is compact if (S, TS) is compact (TS =
subspace topology).

1.4 Theorem. A nonempty subset S of X is compact if and only if each covering of S
consisting of open subsets of X has a finite subcollection that is also a covering of S.

1.5 Example. In Example 1.2, (−1, 1) is not compact since no finite subcollection of U is a
covering. Incidentally, the finite subcollection {U1, U2, U3} of U is a covering of [−1/2, 1/2],
but this does not prove, of course, that [−1/2, 1/2] is compact, since to prove this one would
have to show that every open covering has a finite subcollection that is a covering. It will
be shown in Section 3 that [−1/2, 1/2] is compact, nevertheless.

Exercise 41. Prove that every finite subset of X is compact.

1.6 Theorem. X is compact if and only if for each collection {Aα}α∈I of closed subsets
of X satisfying ∩α∈JAα 6= ∅ for every finite J ⊆ I, we have ∩α∈IAα 6= ∅.

Let (Y, T ′) be another topological space.

1.7 Theorem. Let f : X → Y be continuous. If S is a compact subset of X, then f(S)
is compact.

Exercise 42. Prove Theorem 1.7. (Hint: Use Theorem 1.4.)

1.8 Theorem. If (X, T ) is compact and (X, T ) ' (Y, T ′), then (Y, T ′) is compact.

2. Compactness and Closed Sets.

Let (X, T ) be a topological space.

2.1 Theorem. If (X, T ) is compact and A is a closed subset of X, then A is compact.

Of course, if (X, T ) is not compact, then a closed subset of X need not be compact,
since, for instance, X itself is closed.
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2.2 Theorem. If (X, T ) is Hausdorff and S is a compact subset of X, then S is closed.

Exercise 43. Give an example to show that the Hausdorff assumption in Theorem 2.2
cannot be removed.

Let (Y, T ′) be another topological space.

2.3 Theorem. If (X, T ) is compact, (Y, T ′) is Hausdorff, and f : X → Y is a contin-
uous bijection, then f is a homeomorphism.

3. Products of Compact Spaces.

Let (X, T ) be a topological space.

3.1 Lemma. Let B be a basis for T . Assume that every collection of elements of B that
is a covering of X has a finite subcollection that is also a covering of X. Then (X, T ) is
compact.

3.2 Theorem. If (X1, T1) and (X2, T2) are compact topological spaces, then their prod-
uct X = X1 ×X2 is compact.

If {(Xα, Tα)}α∈I is a family of topological spaces, then there is a natural way to define
the product X =

∏
α Xα and a (less natural) way to define a topology T on X such that

if each (Xα, Tα) is compact, then (X, T ) is compact (Tychonoff’s Theorem).

3.3 Theorem. Any closed interval [a, b] ⊂ R (usual topology) is compact.

3.4 Definition. A subset S of R2 is bounded if S ⊆ [−b, b]× [−b, b] for some b ∈ N.

3.5 Theorem. (Heine-Borel) A subset S of R2 (usual topology) is compact if and only
if it is closed and bounded.

One can use a definition similar to 3.4 to define a bounded subset of Rn for any n ∈ N.
The Heine-Borel theorem is valid in this more general setting, as well.
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Chapter 5. Algebraic Topology

1. Fundamental Group.

Let (X, T ) be a topological space. Set I = [0, 1] ⊂ R and I2 = I × I. Fix a, b ∈ X.

1.1 Definition. Two paths f and g from a to b are homotopic (written f ∼ g) if there
exists a continuous function H : I2 → X such that for all t, u ∈ I we have

H(t, 0) = f(t),

H(t, 1) = g(t),

H(0, u) = a,

H(1, u) = b.

Intuitively, f and g are homotopic if f can be continuously deformed to g.

1.2 Theorem. ∼ is an equivalence relation on the set of all paths from a to b.

The equivalence class of f is denoted [f ].
If f and g are two paths from a to itself, then the function f · g : I → X given by

(f · g)(t) :=
{

f(2t) 0 ≤ t ≤ 1/2,

g(2t− 1) 1/2 ≤ t ≤ 1

is also a path from a to itself.
Let π(X, a) := {[f ] | f is a path from a to itself}. For [f ], [g] ∈ π(X, a), set [f ] · [g] :=

[f · g].

1.3 Theorem. (π(X, a), ·) is a group.

The group (π(X, a), ·) is called the fundamental group of X with base point a.

1.4 Example. π(R2, a) = {[e]} for any a ∈ R2.

1.5 Example. π(R2\{(0, 0)}, a) ∼= Z (under addition), where R2\{(0, 0)} is viewed as a
subspace of R2 and a is any element of R2\{(0, 0)}.

1.6 Theorem. Let a, b ∈ X and assume that there exists a path from a to b. Then
π(X, a) ∼= π(X, b).

Let (Y, T ′) be another topological space.

1.7 Theorem. Assume (X, T ) ' (Y, T ′). If a ∈ X, b ∈ Y , and ϕ : X → Y is a
homeomorphism such that ϕ(a) = b, then ϕ∗ : π(X, a) → π(Y, b) given by ϕ∗([f ]) = [ϕ ◦ f ]
is an isomorphism.

1.8 Example. R2 6' R2\{(0, 0)}.


