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Notation

• N = {1, 2, 3 . . . }, natural numbers

• Z = {. . . ,−2,−1, 0, 1, 2, . . . }, integers

• Q =
{m
n
|m,n ∈ Z, n 6= 0

}
, rational numbers (fractions)

• R, real numbers

• C = {a+ bi | a, b ∈ R} (i =
√
−1), complex numbers

• Zn = {0, 1, . . . , n− 1}, integers modulo n

• Rn = {(r1, r2, . . . , rn) | ri ∈ R}, n-fold cartesian product of the ring R

• RS , functions from the set S to the ring R

• R[x], polynomials in the indeterminate x with coefficients coming from
the ring R

• End(A), endomorphisms of the abelian group A (i.e., homomorphisms
from A to A)

• H = {a+ bi+ cj + dk | a, b, c, d ∈ R}, quaternions

• Matm×n(R), m× n matrices over R

• Matn(R), n× n matrices over R
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0 Introduction

The general quadratic equation ax2 + bx+ c = 0 has solutions given by the
quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

There are similar formulas for the solutions of the general cubic and quartic
equations. For centuries mathematicians tried to find a formula for the
solutions of a general quintic equation, but to no avail.

Finally, it was shown by Abel in 1826 that no such formula could possibly
exist. He did this by demonstrating that the existence of such a formula
would lead to a contradiction, such as 1 = 0. The same reasoning shows
that there is no such formula for the solutions of any polynomial equation
of degree greater than four.

The modern-day proof of this theorem involves an area of algebra called
Galois theory, named after its main discoverer. Remarkably, the same theory
is used to settle other questions that plagued mathematicians for years.
For instance, the theory shows that there can be no general algorithm for
trisecting an angle using only a straightedge and compass (surprising since
there is such an easy algorithm for bisecting an angle, which we all learned
as children).

We begin by studying general ring theory and then move to field theory and
Galois theory. Our goal is to prove, using Galois theory, Abel’s result on the
insolvability of the quintic (we will prove the nonexistence of an algorithm
for trisecting an angle using only straightedge and compass along the way).
Aside from the historical significance of this result, the fact that its proof
ultimately uses almost every important idea in the course (indeed in both
courses) makes it a worthwhile goal.

1 Definition of ring and examples

1.1 Definition

A ring is a triple (R,+, · ), where (R,+) is an abelian group and · is a
binary operation on R (written (r, s) 7→ rs) satisfying the following for all
r, s, t ∈ R:
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(a) r(st) = (rs)t,

(b) r(s+ t) = rs+ rt,

(c) (r + s)t = rt+ st.

If (R,+, · ) is a ring, we say that R is a ring under + and · (or just that R
is a ring when the binary operations are clear from the context). Part (a)
says that · is associative. Parts (b) and (c) say that · distributes over
+ from the left and the right, respectively.

Let (R,+, · ) be a ring. Denote by 0 the identity element of the group (R,+).

• An element 1 6= 0 of R is an identity (or multiplicative identity)
if it is an identity for the operation · , meaning, 1r = r and r1 = r for
all r ∈ R. An identity, if one exists, is unique. If R has an identity,
we sometimes say that R is a ring with 1.

• R is commutative if the operation · is commutative, meaning, rs =
sr for all r, s ∈ R. R is noncommutative if it is not commutative.

1.2 Examples: Z, Q, R, C, 2Z

• Z, Q, R, and C are all commutative rings with identity under usual
addition and multiplication.

• 2Z = {2n |n ∈ Z} is a commutative ring without identity.

1.3 Example: Integers modulo n

Let n be a positive integer and put Zn = {0, 1, . . . , n − 1}. On this set,
define addition modulo n by letting r+ s be the remainder upon division
by n of r + s (usual sum). Similarly, define multiplication modulo n by
letting rs be the remainder upon division by n of rs (usual product). For
instance, if n = 5, then 4 + 2 = 1 and 4 ·2 = 3. Then, with these operations,
Zn is a ring, the ring of integers modulo n. It is commutative, and the
number 1 is an identity if n > 1.
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1.4 Example: Rn

Let R be a ring and let n be a positive integer. The set Rn = {(r1, r2, . . . , rn)
| ri ∈ R} is a ring under componentwise addition and multiplication:

(r1, r2, . . . , rn) + (s1, s2, . . . , sn) = (r1 + s1, r2 + s2, . . . , rn + sn),

(r1, r2, . . . , rn)(s1, s2, . . . , sn) = (r1s1, r2s2, . . . , rnsn).

If R has identity 1, then the tuple (1, 1, . . . , 1) is an identity for Rn.

1.5 Example: Functions into a ring

Let S be a nonempty set, let R be a ring, and let RS denote the set of
all functions from S to R. For f, g ∈ RS , define f + g and fg in RS by
(f + g)(s) = f(s) + g(s) and (fg)(s) = f(s)g(s) (s ∈ S). RS is a ring
under this addition and multiplication. It is commutative if and only if R
is commutative. If R has identity 1, then RS has identity, also denoted 1,
defined by 1(s) = 1 for all s ∈ S.

If S = {1, 2, . . . , n}, then we can identify f ∈ RS with the n-tuple (r1, r2, . . . ,
rn), where ri = f(i) (1 ≤ i ≤ n), and thereby identify the ring RS with
the ring Rn. It is because of the terminology in this special case that one
often refers to the operations defined above for general S as componentwise
addition and multiplication.

1.6 Example: Polynomial ring

Let R be a ring. A polynomial over R in the indeterminate x, is an
expression of the form

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n,

with n a nonnegative integer and each coefficient ai an element of R.

In the polynomial above, if i > n we put ai = 0 so that ai is defined for
every nonnegative integer i.

Two polynomials are equal if and only if their corresponding coefficients are
equal: ∑

i

aix
i =

∑
i

bix
i ⇐⇒ ai = bi for all i.
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Polynomials are added and multiplied using the usual rules:∑
i

aix
i +
∑
i

bix
i =

∑
i

(ai + bi)x
i,

(
∑
i

aix
i) · (

∑
i

bix
i) =

∑
i

cix
i,

where ci =
∑i

j=0 ajbi−j . With these operations,

R[x] := {
n∑
i=0

aix
i |n ∈ N ∪ {0}, ai ∈ R}

is a ring, the polynomial ring over R in the indeterminate x.

The definition of R[x] given here lacks rigor (for instance, “expression” is
a vague term), but it conforms to our earlier experiences with polynomials
and it is suitable for our discussions here. The reader interested in a careful
definition can find one in Section 9.1.

1.7 Example: Matrix ring

Let R be a ring and let n be a positive integer. Denote by Matn(R) the
set of all n × n matrices with entries coming from R. This is a ring under
matrix addition and matrix multiplication (carried out using the operations
in R), the matrix ring of degree n over R. It is noncommutative if R has
an identity and n > 1, and also if R is noncommutative. If R has identity
1 then the usual identity matrix I (having 1’s down the main diagonal and
0’s elsewhere) is an identity for Matn(R).

1.8 Example: Endomorphism ring

Let A be an abelian group (with binary operation +). Define

End(A) = {f : A→ A | f is a group homomorphism}.

Let f, g ∈ End(A). Define f + g : A → A by (f + g)(a) = f(a) + g(a) and
f ◦ g : A → A by (f ◦ g)(a) = f(g(a)) (function composition). Then f + g
and f ◦ g are both elements of End(A).

(End(A),+, ◦) is a ring, the endomorphism ring of A. It has identity
1 = 1A defined by 1A(a) = a for all a ∈ A.
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1.9 Example: Quaternion ring

Let H be the set of expressions of the form a+bi+cj+dk with a, b, c, d ∈ R
(like complex numbers a+ bi with two more terms). View such expressions
as polynomials in the indeterminates i, j, and k. Define addition in H to
be the same as polynomial addition,

(a+bi+cj+dk)+(a′+b′i+c′j+d′k) = (a+a′)+(b+b′)i+(c+c′)j+(d+d′)k,

and define multiplication in H to be the same as polynomial multiplication
except subject to the rules

i2, j2, k2 = −1, ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j,

so that, for instance,

(2 + 3i− k)(4− j + 5k) = 8− 2j + 10k + 12i− 3ij + 15ik − 4k + kj − 5k2

= 8− 2j + 10k + 12i− 3k − 15j − 4k − i+ 5

= 13 + 11i− 17j + 3k.

(An easy way to remember the last six rules is to think of i, j, and k as
the standard unit vectors in R3 and multiply them using the cross product,
noting that the signs are determined by the right-hand rule.)

The set H, with addition and multiplication as just described, is a ring, the
quaternion ring. Checking that the ring axioms are satisfied is straight-
forward but tedious (but see Section 2.10).

1 – Exercises

1–1 Let S be a nonempty set and let R be a ring. Verify that the left
distributive law ((b) of 1.1) holds in RS (see 1.5).

Hint: The left distributive law states that f(g + h) = fg + fh for all
f, g, h ∈ RS . Each side of this equation represents a function. Two functions
F,G : S → R are equal if and only if F (s) = G(s) for all s ∈ S.

1–2 Let A be an abelian group. Verify that the left distributive law holds
in End(A) (see 1.8).
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1–3 Let R be a ring. Give an inductive proof of the generalized left
distributive law: r(s1 + s2 + · · · + sn) = rs1 + rs2 + · · · + rsn for all
r, si ∈ R.

1–4 Let R be a ring and assume that r2 = r for all r ∈ R.

(a) Prove that r + r = 0 for all r ∈ R.

(b) Prove that R is commutative.

2 Elementary notions

2.1 Notation in underlying abelian group

Let (R,+, · ) be a ring. The group (R,+) is the underlying abelian group
of the ring R. The usual notational conventions are used for this group:

• The identity of (R,+) is denoted 0. It is called the additive identity
to distinguish it from a possible multiplicative identity.

• The inverse of an element r of the group (R,+) is denoted −r. It
is called the additive inverse of r to distinguish it from a possible
multiplicative inverse.

• Let r ∈ R. For an integer n, the expression nr has the meaning that
it was given in group theory: define 0r = 0, where the 0 on the left
is the integer, and the 0 on the right is the additive identity of R; for
a positive integer n, define nr = r + r + · · · + r (n summands), and
(−n)r = n(−r) (which equals −nr).

If n ∈ Z and r ∈ R, the expression nr has two interpretations if n happens
to be an element of R, namely, as defined above and also as a product of
two ring elements. In common rings for which this can happen (like Z, Q,
and R), the two possible interpretations of the expression coincide.

The trivial group {0} is a ring (with multiplication given by 0 · 0 = 0). It
is the trivial ring. Although 0 is an identity for the multiplication in this
ring, the ring does not have an identity, according to the definition, because
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it is required that an identity be nonzero (see Section 1.1). The reason
for this choice is that there are several statements that hold for rings with
identity but not for the trivial ring and it keeps us from constantly having
to make this exception.

2.2 Basic identities

Let R be a ring and let r, s ∈ R.

2.2.1 Theorem.

(i) 0r = 0 and r0 = 0, where 0 is the additive identity of R,

(ii) r(−s) = −rs and (−r)s = −rs,

(iii) (−r)(−s) = rs.

Proof. (i) Using the right distributive property, we get

0r + 0r = (0 + 0)r = 0r = 0r + 0,

so left cancellation gives 0r = 0. Similarly, r0 = 0.

(ii) Since rs+ r(−s) = r(s+ (−s)) = r0 = 0, using part (i), it follows that
r(−s) = −rs. Similarly, (−r)s = −rs.

(iii) Using part (ii) twice, we get (−r)(−s) = −(−r)s = −(−rs) = rs.

2.3 Characteristic of a ring with identity

Let R be a ring with identity. The characteristic of R, denoted char(R), is
the order of the element 1 in the underlying abelian group (R,+) unless this
order is infinity, in which case char(R) = 0. Thus, if there exists a positive
integer n such that 1 + 1 + · · ·+ 1 = 0 (n summands), then the least such n
is the characteristic of R. Otherwise, R has characteristic zero.

For each integer n > 1, the ring Zn has characteristic n. The rings Z, Q,
R, and C each have characteristic zero.

Because of the requirement 1 6= 0 it follows that if R has nonzero character-
istic n, then n 6= 1, implying n > 1.

7



2.4 Unit in a ring with identity

Let R be a ring with identity. An element r of R is a unit if it has a
multiplicative inverse, that is, if there exists s in R such that rs = 1 and
sr = 1. In this case, s is uniquely determined by r; it is denoted r−1. A
nonunit is an element that is not a unit. Note that 0 ∈ R is a nonunit
since, for every s ∈ R we have 0s = 0 6= 1.

The set U(R) of all units in R is a group under multiplication, the group
of units of R.

For example, U(Z) = {1,−1} ∼= Z2.

2.5 Units in Zn

The Euler phi function is the function φ : N→ N∪{0} with φ(n) defined
to be the number of integers m such that 1 ≤ m < n and gcd(m,n) = 1.

For example, φ(9) = 6 since 1, 2, 4, 5, 7 and 8 are the integers satisfying
the conditions on m in this case.

Let n be an integer with n > 1.

2.5.1 Theorem.

(i) A nonzero element m of Zn is a unit if and only if gcd(m,n) = 1.

(ii) U(Zn) has order φ(n).

(iii) U(Zp) = Zp\{0} for each prime number p.

Proof. (i) Let m be a nonzero element of Zn. The set H = {am+ bn | a, b ∈
Z} is a subgroup of Z and it is cyclic since Z is cyclic. In group theory,
gcd(m,n) was defined to be the positive generator of H (and it was shown
that this definition coincides with the usual one).

Now m is a unit if and only if rm = 1 for some r ∈ Zn, the product rm
being taken modulo n. Therefore, m is a unit if and only if rm = sn + 1
for some r, s ∈ Z, where here the computations are carried out in Z. Since
this equation can be written 1 = rm+ (−s)n, we see that m is a unit if and
only if 1 is an element of H, which holds if and only if H = 〈1〉. The claim
follows.
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(ii) This follows immediately from part (i) and the definition of φ(n).

(iii) If p is a prime number, then gcd(m, p) = 1 for all 0 < m < p, so the
claim follows from (i).

For example, the units in Z9 are 1, 2, 4, 5, 7 and 8. Therefore, U(Z9) =
{1, 2, 4, 5, 7, 8}, a group of order φ(9) = 6 (and hence isomorphic to Z6 since
it is abelian).

2.6 Division ring and field

A division ring is a ring with identity having the property that every
nonzero element is a unit. Put another way, a ring R with identity is a
division ring if and only if U(R) = R×, where × indicates that 0 is removed
(so R× = R\{0}).

A field is a commutative division ring.

• Q, R, and C are fields.

• Zp is a field for every prime number p (see Section 2.5).

• H is a division ring but not a field (see Exercise 2–7).

• Z is not a division ring since 2 ∈ Z has no multiplicative inverse.

2.7 Direct sum of rings

Let R1 and R2 be rings. The direct sum R1 ⊕ R2 = {(r1, r2) | ri ∈ Ri} of
the underlying abelian groups of R1 and R2 is a ring with componentwise
multiplication. Therefore, the operations in this ring are given by

(r1, r2) + (r′1, r
′
2) = (r1 + r′1, r2 + r′2), (r1, r2)(r

′
1, r
′
2) = (r1r

′
1, r2r

′
2).

This ring is the direct sum of the rings R1 and R2. The direct sum of an
arbitrary finite collection of rings is defined similarly.

2.8 Operation tables

Let R be a finite ring. There are two operation tables associated with R:
the addition table of R is the operation table of the underlying abelian
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group described in group theory; the multiplication table of R, defined
analogously, is the table with rows and columns labeled with the elements
of R (in a fixed order, usually with 0 coming first) and with the product rs
displayed in the row labeled r and the column labeled s (r, s ∈ R).

For example, the ring Z4 has addition and multiplication tables

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

The addition table of R has the property that each element of the ring
appears precisely once in each row and in each column. The multiplication
table of a nontrivial ring R does not satisfy this property due to the fact that
0r = 0 for all r ∈ R. However, if R is a division ring, then the multiplication
table with 0’s removed does satisfy this property since (R×, · ) is a group.

2.9 Isomorphism

Let R and R′ be rings. An isomorphism from R to R′ is a bijection
ϕ : R→ R′ satisfying the homomorphism property:

(i) ϕ(r + s) = ϕ(r) + ϕ(s),

(ii) ϕ(rs) = ϕ(r)ϕ(s),

for all r, s ∈ R. So ϕ : R→ R′ is an isomorphism if it is an isomorphism be-
tween the underlying groups and it also satisfies the multiplicative property
stated in (ii).

The rings R and R′ are isomorphic, written R ∼= R′, if there exists an
isomorphism from R to R′. (This definition appears to be asymmetrical,
but in fact R ∼= R′ if and only if R′ ∼= R by Exercise 2–5.)

Assume R ∼= R′ and let ϕ : R → R′ be an isomorphism. As with the
notion of group isomorphism, ϕ can be viewed as a “renaming function”; it
takes an element r of R and renames it ϕ(r) in R′. Since ϕ is injective, no
two elements of R end up with the same name after renaming, and since
it is surjective, every name in R′ gets used. Moreover, since ϕ satisfies the
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homomorphism property, the binary operations in R′ act on the renamed
elements in exactly the same way the binary operations in R act on the
elements before renaming. Consequently, the rings R and R′ are exactly
the same except possibly for the names chosen for their elements and the
symbols chosen for their binary operations.

2.10 Example

Since two isomorphic rings are identical, except possibly for the notation
used for their elements and the symbols used for their binary operations
(Section 2.9), it follows that if one has a property expressible entirely in
terms of its elements and its binary operations, then the other must also
have that property. Here is an illustration of this principle:

2.10.1 Theorem. Let R and R′ be rings and assume that R ∼= R′. If R
is commutative, then so is R′.

Proof. Assume R is commutative. Let r′ and s′ be two elements of R′.
Since R ∼= R′, there exists an isomorphism ϕ : R → R′. In particular, ϕ is
surjective, so there exist r and s in R such that ϕ(r) = r′ and ϕ(s) = s′.
We have

r′s′ = ϕ(r)ϕ(s) = ϕ(rs) = ϕ(sr) = ϕ(s)ϕ(r) = s′r′.

Therefore, R′ is commutative.

If you know that a given ring has a certain property and you wish to conclude
that a ring isomorphic to it has the same property, then it is usually safe to
skip this formalism of a theorem and proof and simply draw the conclusion.
For instance, assuming a ring R is isomorphic to a ring R′, it is customary
just to assert: if R has an identity, then so does R′; if R has characteristic
5, then so does R′; if R has precisely three nonunits, then so does R′; and
so on.

The definition of isomorphism assumes that R and R′ are both known to
be rings, and this will usually be the case in the applications of this notion.
However, the definition makes sense even if it is assumed only that these are
sets with two binary operations. We give an example to show that there is
sometimes something to be gained by relaxing the assumptions.
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It was mentioned that it is tedious to check that the addition and multipli-
cation defined for the set H satisfy the ring axioms (see 1.9). Here is a way
to avoid some of the computations. Let R be the set of 2 × 2 matrices of
the form (

a+ bi c+ di
−c+ di a− bi

)
.

Then R is closed under matrix addition and multiplication (as is easy to
check) and is therefore a ring (a “subring” of Mat2(C)). Define ϕ : H→ R
by

ϕ(a+ bi+ cj + dk) =

(
a+ bi c+ di
−c+ di a− bi

)
.

Then ϕ is a bijection and it satisfies the homomorphism property (see Exer-
cise 2–6). Therefore, this map is simultaneously an isomorphism of additive
binary structures and multiplicative binary structures: (H,+) → (R,+),
(H, · )→ (R, · ). Since addition and multiplication in R satisfy the ring ax-
ioms, it follows that addition and multiplication in H satisfy the ring axioms
as well.

2 – Exercises

2–1 Let R be a ring. Prove that r(ns) = n(rs) for all r, s ∈ R, n ∈ Z.

Hint: First handle the case of positive n. Use Section 2.2 for the remaining
cases.

2–2 Let R be a ring with identity 1 and let n ∈ Z. Prove that nr = 0 for
every r ∈ R if and only if n1 = 0. (Note: This shows, in particular, that
nr = 0 for every r ∈ R, where n = char(R).)

2–3 Find the characteristic of the ring End(A), where A = Z4 ⊕ Z6.

2–4 Determine |U(Z8 ⊕ Z12)| and support your claim.

2–5 Prove that the property of being isomorphic (∼=) is an equivalence
relation (i.e., reflexive, symmetric, transitive) on the class of all rings. (You
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may skip the proof of any part involving the underlying abelian group since
the corresponding statement about groups is known to be valid.)

2–6 Verify that ϕ : H → R as defined in Section 2.10 satisfies the homo-
morphism property.

2–7 Prove that the ring H of quaternions is a division ring but not a field.

Hint: Due to Exercise 2–6 and the discussion in Section 2.10 we know that
H is a ring. H can be viewed as a generalization of C. A formula for the
inverse of a nonzero complex number z = a + bi is z−1 = z̄/|z|2, where
z̄ = a− bi and |z| =

√
a2 + b2.

3 Subring and ideal

3.1 Definition

Let R be a ring. A subset S of R is a subring of R, written S ≤ R if it
is a subgroup of (R,+) and it is closed under multiplication. Therefore, a
subset S of R is a subring if

(i) 0 ∈ S,

(ii) s, s′ ∈ S ⇒ s+ s′ ∈ S,

(iii) s ∈ S ⇒ −s ∈ S,

(iv) s, s′ ∈ S ⇒ ss′ ∈ S.

(The first three properties say that S is a subgroup of (R,+).) A subring is
a ring in its own right.

A subring I of R is an ideal of R, written I /R, if it satisfies the absorption
property

a ∈ I, r ∈ R ⇒ ra, ar ∈ I.

An ideal is the ring-theoretic analog of group theory’s normal subgroup. The
set of cosets of an ideal form a ring using natural operations (see Section 5).
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The absorption property is stronger than the statement that I is closed
under multiplication. Therefore, in order to show that a subset I of R is an
ideal, one need only show that it is a subgroup of (R,+) and that it satisfies
the absorption property.

There are one-sided versions of an ideal: A left ideal of R is a subring I that
satisfies the left absorption property (a ∈ I, r ∈ R⇒ ra ∈ I), and similarly
for right ideal. In order to distinguish from either of these versions, an
ideal, as defined above, is often referred to as a two-sided ideal.

3.2 Examples

• Let R be a ring. Then R is an ideal of R; any other ideal is a proper
ideal. Also {0} is an ideal of R, the trivial ideal; any other ideal is
a nontrivial ideal.

• If n is an integer, then nZ is an ideal of Z.

• We have nested subrings Z ≤ Q ≤ R ≤ C ≤ H none of which is an
ideal of the next.

• The set S = {(n, 0) |n ∈ Z} is a subring of Z⊕Z (it is even an ideal).
This example shows that if a ring has an identity, then a subring need
not have that identity as an element. Indeed Z⊕Z has identity (1, 1),
but (1, 1) /∈ S. The subring S does happen to have its own identity
though, namely, (1, 0).

3.3 Ideal containing unit is whole ring

Let R be a ring with identity and let I be an ideal of R.

3.3.1 Theorem. If I contains a unit, then I = R.

Proof. Assume that I contains a unit u. For every r ∈ R, we have

r = r1 = r(u−1u) = (ru−1)u ∈ I,

where we have used the absorption property of I. Therefore, R ⊆ I, which
forces equality.

In particular, the only ideals in a field F are {0} and F .
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3.4 Ideal generated by a set

Let R be a ring and let X be a subset of R. The ideal of R generated by
X, denoted (X), is the intersection of all ideals of R containing X:

(X) =
⋂
I/R
I⊇X

I.

Since the intersection of a collection of ideals is an ideal (Exercise 3–4), (X)
is indeed an ideal of R as the terminology suggests. It is the smallest ideal
containing X in the sense that it is contained in every ideal that contains
X.

If X = {a1, a2, . . . , an}, then (X) equals ({a1, a2, . . . , an}), but we write this
more simply as (a1, a2, . . . , an).

3.5 Principal ideal

Let R be a ring. For a ∈ R, the ideal (a) is the principal ideal of R
generated by a.

3.5.1 Theorem. Assume that R is commutative and that it has an iden-
tity. For every a ∈ R we have

(a) = Ra := {ra | r ∈ R}.

Proof. Let a ∈ R. We claim that Ra is an ideal. First, 0 = 0a ∈ Ra. Next,
for each r, r′ ∈ R we have ra+r′a = (r+r′)a ∈ Ra, and −(ra) = (−r)a ∈ Ra
so Ra is closed under addition and negation. Finally, for each r, s ∈ R
we have r(sa) = (rs)a ∈ Ra and (sa)r = (sr)a ∈ Ra (using that R is
commutative), so the absorption property holds.

Now a = 1a ∈ Ra, so (a) ⊆ Ra since (a) is the intersection of all ideals of R
containing a. On the other hand, every ideal of R containing a must contain
Ra by the absorption property, so that Ra ⊆ (a). Therefore, (a) = Ra as
claimed.

Here are some examples of principal ideals.

• In the ring Z, we have (n) = nZ for each n ∈ Z. Since an ideal of Z
is a subgroup of (Z,+) and therefore of the form nZ for some n ∈ Z,
it follows that every ideal of Z is principal.
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• In the ring Z[x], the principal ideal (x) consists of all polynomials
having no constant term.

• In the ring Z⊕ Z, we have ((1, 0)) = {(n, 0) |n ∈ Z}.

3 – Exercises

3–1 Let R be a ring. The center of R is the set

C = {c ∈ R | cr = rc for all r ∈ R}.

Prove that the center of R is a subring of R.

3–2 Let R be a commutative ring with identity and let n be a positive
integer. Prove that the center of Matn(R) (see Exercise 3–1) is the set of
scalar matrices, where a scalar matrix is a matrix of the form rI (r ∈ R)
(i.e., r’s on the main diagonal and zeros elsewhere).

Hint: Any matrix in the center must commute with each matrix ekl having
1 in the (k, l) position and zeros elsewhere. Use that the (i, j) entry of ekl is
δikδjl, where δab is the Kronecker delta defined to be 1 if a = b and zero
otherwise.

3–3 Let R be a ring and let I and J be ideals of R. Define the sum of I
and J by I + J = {a+ b | a ∈ I, b ∈ J}. Prove that I + J is an ideal of R.

3–4 Let R be a ring and let {Iα}α∈A be a family of ideals of R. Prove that
the intersection

⋂
α∈A Iα is an ideal of R.

4 Integral domain

4.1 Definition

A nonzero element r of a ring is a divisor of zero if there exists a nonzero
element s of the ring such that rs = 0. An integral domain is a commu-
tative ring with identity having no divisors of zero. Put another way, a ring
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is an integral domain if and only if it is a commutative ring with identity
and for elements r and s of the ring,

rs = 0 ⇒ r = 0 or s = 0.

• Q, R, C are integral domains. In fact, every field is an integral domain
(see Section 4.3).

• Z is an integral domain.

• Z6 is not an integral domain, since 2 and 3 are nonzero elements having
product zero. More generally, Zn (n > 1) is an integral domain if and
only if n is prime.

4.2 Cancellation property

Let R be a commutative ring with identity. The ring R is said to have the
cancellation property if, for r, s, t ∈ R,

(rs = rt and r 6= 0) ⇒ s = t.

4.2.1 Theorem. R is an integral domain if and only if it has the cancel-
lation property.

Proof. Assume that R is an integral domain. Let r, s, t ∈ R with rs = rt and
r 6= 0. Rearranging, we have r(s− t) = 0. The assumption gives s− t = 0,
so that s = t. Therefore, R has the cancellation property.

Now assume that R has the cancellation property. We have assumed that
R is a commutative ring with identity. Let r, s ∈ R with rs = 0. Assume
that r 6= 0. We have rs = 0 = r0, so the cancellation property yields s = 0.
Therefore, R is an integral domain.

4.3 Every field is an integral domain

4.3.1 Theorem. Every field is an integral domain.

Proof. Let R be a field. As part of the definition of field, R is a commutative
ring with identity. The zero element of R is not a divisor of zero (by one of
the requirements of divisor of zero) and every nonzero element of R is a unit
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and hence not a divisor of zero (by Exercise 4–1). Thus, R has no divisors
of zero and is therefore an integral domain.

The converse of this theorem is not true since the ring of integers Z is an
integral domain but not a field. However, we see in the next section that a
finite integral domain is a field.

4.4 Every finite integral domain is a field

Let n be a positive integer. If n is composite, say, n = lm with l,m ∈ N,
l,m < n, then l is a divisor of zero in Zn, since lm = 0. It follows that the
only integral domains among the rings Zn, n = 2, 3, . . ., are the ones with n
prime, that is, the fields. This is in keeping with the following result.

4.4.1 Theorem. Every finite integral domain is a field.

Proof. Let R be a finite integral domain and let r be a nonzero element of
R. It suffices to show that r is a unit. Since R is finite, its elements can be
enumerated: r1, r2, . . . , rn. Since R has the cancellation property (Section
4.2), the elements rr1, rr2, . . . , rrn are distinct. Therefore, these must be the
n elements of R in some order. In particular, rri = 1 for some i, implying
that r is a unit.

4.5 Characteristic of integral domain

Let R be an integral domain.

4.5.1 Theorem.

(i) The characteristic of R is either prime or zero.

(ii) If R is finite, then its characteristic is prime.

Proof. (i) Assume that the characteristic n of R is not zero. First note that
we have n > 1. Suppose that n has a proper factorization: n = n1n2 with
0 < n1, n2 < n. Using Exercise 2–1, we get (n11)(n21) = n1 = 0, and since
R is an integral domain, it follows that either n11 = 0 or n21 = 0. But
either case contradicts that n is the order of 1 in (R,+). We conclude that
n has no proper factorization, that is, char(R) = n is prime.
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(ii) We prove the contrapositive. Assume that the characteristic of R is not
prime. By (i), the characteristic of R is zero, which is to say that 1 has
infinite order in the group (R,+). Thus Z ∼= 〈1〉 ⊆ R and R is infinite.

4.6 Field of fractions of an integral domain

The ring Z is an integral domain. However, it is not a field, since, for
instance, the integer 2 is not a unit (it has no multiplicative inverse). One
imagines that Z is not a field because it is just not large enough.

The question arises of whether the set Z can be augmented by the addition
of new elements in such a way that the resulting set can be made into a
field with operations compatible with those in Z. It is these considerations
that led to the creation of the field Q, which is the set of all fractions n/m
(n,m ∈ Z, m 6= 0) endowed with usual fraction addition and multiplication.
The ring Z is viewed as a subring of Q by identifying the integer n with the
fraction n/1.

There are other fields that contain Z as a subring, but Q is the smallest such
in the sense that any other contains Q as well (or at least a field isomorphic
to Q). For instance, R and C both contain Z as a subring, and they contain
Q as well.

The properties of an integral domain are strong enough to guarantee that
the procedure described above can be carried out almost verbatim to embed
the integral domain in a field. Here is the construction:

Let R be an integral domain.

(i) Let P be the set of all pairs (r, s) with r, s ∈ R and s 6= 0. (Think of
(r, s) as the fraction r/s.)

(ii) Define addition and multiplication on P by the following formulas:

(r, s) + (r′, s′) = (rs′ + sr′, ss′), (r, s)(r′, s′) = (rr′, ss′).

(If P is to be closed under these operations, we must have ss′ 6= 0,
and this is the case since R has no divisors of zero.)

(iii) Define a relation on P by putting

(r, s) ∼ (r′, s′) if rs′ = sr′
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This is an equivalence relation. Denote by r/s the equivalence class
of (r, s). (Thus, just like with rational numbers, we have equality of
fractions, r

s = r′

s′ , if and only if the “cross products” rs′ and sr′ are
equal.)

(iv) The addition and multiplication defined on P induce operations on
the set Q(R) = {r/s | r, s ∈ R, s 6= 0}:

r

s
+
r′

s′
=
rs′ + sr′

ss′
,

r

s
· r
′

s′
=
rr′

ss′
,

and with these operations, Q(R) is a field.

(v) The set {r/1 | r ∈ R} is a subring of Q(R). The map defined by r 7→
r/1 is an isomorphism from R onto this set. We use this isomorphism
to view R as a subring of Q(R) (just as we view Z as a subring of Q
by writing the integer n as the fraction n/1).

(vi) If F is a field and R is a subring of F , then {rs−1 | r, s ∈ R, s 6= 0} is
a subring of F isomorphic to Q(R) and it contains R. (So Q(R) is the
smallest field containing R in a sense.)

4 – Exercises

4–1 Let R be a commutative ring with identity and let r be a unit in R.
Prove that r is not a divisor of zero.

4–2 Let R be a commutative ring with identity and assume that {0} and
R are the only ideals of R. Prove that R is a field.

Hint: Section 3.5.

4–3 Let R be a ring having no divisors of zero and let I and J be nontrivial
ideals of R. Prove that I ∩ J is nontrivial.

4–4 Prove that the addition defined in (iv) of 4.6 is well defined in the
sense that it does not depend on how the fractions are written.
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4–5 Prove (vi) of 4.6.

5 Quotient ring

5.1 Definition

Let R be a ring and let I be an ideal of R. Since the group (R,+) is abelian,
the ideal I, viewed as a subgroup, is normal. Therefore, the quotient group
R/I is defined. It is the set

R/I = {r + I | r ∈ R}

of cosets of I with binary operation being coset sum. The next theorem says
that there is a product of cosets relative to which R/I is actually a ring.

5.1.1 Theorem.

(i) The formulas

(r + I) + (s+ I) = (r + s) + I and (r + I)(s+ I) = rs+ I.

give well-defined binary operations + and · on R/I.

(ii) (R/I,+, · ) is a ring.

Proof. (i) In group theory it is shown that the indicated sum is well-defined.
It is also shown in group theory that there is equality of cosets r+I = r′+I
if and only if r − r′ ∈ I. Let r, r′, s, s′ ∈ R and assume that r + I = r′ + I
and s+ I = s′ + I. Then

rs− r′s′ = rs− r′s+ r′s− r′s′ = (r − r′)s+ r′(s− s′) ∈ I,

where we have used that r − r′ ∈ I and s− s′ ∈ I as well as the absorption
property of the ideal I. Thus, rs + I = r′s′ + I and the formula for the
product of cosets is independent of chosen coset representatives, implying
that it is well defined.

(ii) We know from group theory that (R/I,+) is a group, and the formula
for sum of cosets shows that this group is abelian. Let r+I, s+I, t+I ∈ R/I.
Then

(r + I)[(s+ I)(t+ I)] = (r + I)(st+ I) = r(st) + I = (rs)t+ I

= (rs+ I)(t+ I) = [(r + I)(s+ I)](t+ I),
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so multiplication of cosets is associative. Similar arguments show that the
two distributive laws hold. Therefore, (R/I,+, · ) is a ring.

(R/I,+, · ) is the quotient ring (or factor ring) of R by I. The notation
R/I is read “R modulo I” or “R mod I.”

Recall that 0 + I (= I) is the additive identity of R/I and the additive
inverse of r + I ∈ R/I is −r + I. If R has identity 1, then R/I has identity
1 + I provided 1 + I 6= 0 + I, which is the case if and only if I is proper.

The assumption that I is an ideal (rather than simply a subring) is essential
here. Indeed if I fails to have the absorption property, then the product
given in the theorem is not well-defined (see Exercise 5–1).

5.2 Example: Z/nZ

Let n be a positive integer. Since nZ is an ideal of Z (in fact, nZ = (n)), the
quotient ring Z/nZ is defined. The group isomorphism Z/nZ → Zn given
by m + nZ 7→ r, where r is the remainder of m upon division by n, is an
isomorphism of rings as well. Therefore

Z/nZ ∼= Zn.

For example, taking n to be 3 and simplifying notation by putting I = 3Z,
we have Z/3Z = Z/I = {0 + I, 1 + I, 2 + I} and the operation tables for this
ring are

+ 0 + I 1 + I 2 + I

0 + I 0 + I 1 + I 2 + I
1 + I 1 + I 2 + I 0 + I
2 + I 2 + I 0 + I 1 + I

· 0 + I 1 + I 2 + I

0 + I 0 + I 0 + I 0 + I
1 + I 0 + I 1 + I 2 + I
2 + I 0 + I 2 + I 1 + I

If every occurrence of +I is suppressed, one obtains the operation tables of
the ring Z3 = {0, 1, 2}, which demonstrates that Z/3Z ∼= Z3 as expected.

5.3 Theorems of Euler and Fermat

Let n be a positive integer. For a, b ∈ Z, we say that a is congruent
modulo n to b, written a ≡ b (mod n), if the difference a− b is divisible by
n.
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For example, 2 ≡ 12 (mod 5), since 2− 12 = −10 is divisible by 5.

Congruence modulo n is an equivalence relation on Z. In fact, it is the same
relation on Z as (right) congruence modulo the subgroup nZ (defined by
putting a ≡r b (mod nZ) if and only if a− b ∈ nZ).

In the following theorem, φ is the Euler phi function (Section 2.5).

5.3.1 Theorem.

(i) (Euler’s theorem) For every integer m with gcd(m,n) = 1, we have
mφ(n) ≡ 1 (mod n).

(ii) (Fermat’s little theorem) For every integer m and prime number p, we
have mp ≡ m (mod p).

Proof. (i) Let m be an integer with gcd(m,n) = 1. Let r be the remainder
of m upon division by n. Then m = qn + r for some integer q, so any
divisor of both n and r is also a divisor of m. Since gcd(m,n) = 1, it
follows that gcd(r, n) = 1. Since also 0 ≤ r < n, it follows from Section
2.5 that r is in the group of units of Zn, which has order φ(n). A corollary
of Lagrange’s theorem says that any element of a finite group raised to the
order of the group is equal to the identity. Thus, rφ(n) = 1. Now m + nZ
corresponds to r under the isomorphism Z/nZ → Zn described in Section
5.2, so mφ(n) + nZ = (m + nZ)φ(n) = 1 + nZ. Therefore, mφ(n) − 1 ∈ nZ,
which implies that mφ(n) ≡ 1 (mod n).

(ii) Let m be an integer and let p be a prime number. If p - m then (i)
applies with n = p to give mp−1 ≡ 1 (mod p) and multiplying both sides
by m gives the stated equivalence. If p | m, then both sides of the stated
equivalence are congruent to 0 modulo p.

5.4 Ideal is prime iff quotient is integral domain

Let R be a commutative ring with identity. An ideal I of R is a prime
ideal if

(i) I 6= R,

(ii) rs ∈ I (r, s ∈ R) =⇒ r ∈ I or s ∈ I.
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In other words, an ideal I is prime provided it is proper and the only way a
product can be in I is if one of the factors is in I.

Let I be an ideal of R.

5.4.1 Theorem. The ideal I is prime if and only if R/I is an integral
domain.

Proof. (⇒) Assume that I is prime. The ring R/I is commutative and it
has identity 1 + I (for this we need to observe that 1 + I 6= 0 + I since I is
proper). Let r + I, s+ I ∈ R/I and assume that (r + I)(s+ I) = 0 + I and
r + I 6= 0 + I. Now rs + I = (r + I)(s + I) = I, implying rs ∈ I. Since I
is prime, and r /∈ I, we have s ∈ I, so that s + I = 0 + I. Thus R/I is an
integral domain.

(⇐) Assume that R/I is an integral domain. Then R/I has an identity
different from the zero element 0 + I. In particular, R/I has at least two
elements, implying that I 6= R. Let r, s ∈ R and assume that rs ∈ I and
r /∈ I. Then (r+ I)(s+ I) = rs+ I = 0 + I and r+ I 6= 0 + I. Since R/I is
an integral domain, we conclude that s+ I = 0 + I so that s ∈ I. Therefore,
I is prime.

Let n be a positive integer. Since Z/(n) = Z/nZ ∼= Zn is an integral domain
if and only if n is prime (see Section 4.4), it follows from the theorem that
(n) is a prime ideal of Z if and only if n is prime.

The notion of a prime ideal provides another characterization of integral
domain, namely, R is an integral domain if and only if the ideal {0} is
prime. This statement follows directly from the definitions, but it can also
be seen using the theorem since R/{0} ∼= R.

5.5 Ideal is maximal iff quotient is field

Let R be a commutative ring with identity. An ideal I of R is a maximal
ideal if

(i) I 6= R,

(ii) I $ J / R =⇒ J = R.
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In other words, an ideal I is maximal if and only if it is proper and it is not
properly contained in any other proper ideal of R.

Let I be an ideal of R.

5.5.1 Theorem. The ideal I is maximal if and only if R/I is a field.

Proof. (⇒) Assume that I is maximal. Since I is proper, we have 1 + I 6=
0 + I, so R/I has identity 1 + I. Also, R/I is commutative since R is
commutative. Let s+ I be a nonzero element of R/I. Put

J = (s) + I = Rs+ I = {rs+ a | r ∈ R, a ∈ I},

which is an ideal by Exercise 3–3. For a ∈ I we have a = 0s + a ∈ J , so
I ⊆ J . Now s = 1s + 0 ∈ J , but s /∈ I (since s + I 6= I), so I $ J / R.
Since I is maximal, it follows that J = R. Thus 1 ∈ R = J , implying that
1 = rs+ a for some r ∈ R and a ∈ I. Then (r + I)(s+ I) = rs+ I = 1 + I
(since 1− rs = a ∈ I), so s+ I is a unit.

(⇐) Assume that R/I is a field. Then R/I has an identity different from the
zero element 0 + I. In particular, R/I has at least two elements, implying
that I 6= R. Let I and J be ideals of R and assume that I $ J / R. Since
I $ J , there exists r ∈ J\I. Then r+ I 6= 0 + I, so there exists s+ I ∈ R/I
such that 1 + I = (r + I)(s + I) = rs + I (since every nonzero element of
R/I is a unit). We have 1− rs ∈ I ⊆ J , so 1 = (1− rs) + rs ∈ J , implying
that J = R (see Section 3.3). Thus, I is maximal.

Let n be a positive integer. Since Z/(n) = Z/nZ ∼= Zn is a field if and
only if n is prime (see Section 2.6), it follows from the theorem that (n) is a
maximal ideal of Z if and only if n is prime. In view of Section 5.4, we see
that the maximal ideals and the prime ideals of Z coincide.

We see in the next section that every maximal ideal is prime, but not con-
versely.

5.6 Maximal ideal is prime

Let R be a commutative ring with identity and let I be an ideal of R.

5.6.1 Theorem. If I is maximal, then I is prime.

25



Proof. Assume that I is maximal. Then R/I is a field (Section 5.5) and
hence an integral domain (Section 4.3). Therefore, I is prime (Section 5.4).

The converse of this theorem is not true. In other words, it is possible for
an ideal to be prime but not maximal. For instance, considering the ideal
I = {0} of the ring Z, we have Z/I ∼= Z, which is an integral domain but
not a field. Therefore, I is prime by 5.4.1, but it is not maximal by 5.5.1.

5 – Exercises

5–1 Let R be a ring and let S be a subring of R that is not an ideal. Prove
that there are cosets r + S and t + S of S for which the product formula
(r + S)(t+ S) = rt+ S is not well defined.

5–2 Let n be a nonnegative integer and assume that p = 4n+ 3 is prime.
Use Fermat’s little theorem (5.3) to show that there is no integer x for which
x2 ≡ −1 (mod p).

5–3 Let R be a commutative ring with identity and let S be the set con-
sisting of 0 and all of the divisors of zero in R. Prove that S contains at
least one prime ideal of R.

Hint: Consider an ideal ofR that is maximal among all ideals ofR contained
in S (one can show that such an ideal exists by Zorn’s lemma, but you may
just assume existence). Use Exercise 3–3.

5–4 Let R be a commutative ring with identity. Use Section 5.5 to prove
that if {0} and R are the only ideals of R, then R is a field. (Cf. Exercise
4–2.)
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6 Homomorphism

6.1 Definitions

Let R and R′ be rings. A homomorphism from R to R′ is a function
ϕ : R→ R′ satisfying

(i) ϕ(r + s) = ϕ(r) + ϕ(s),

(ii) ϕ(rs) = ϕ(r)ϕ(s),

for all r, s ∈ R.

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An isomorphism is a bijective homomorphism.

• An automorphism is an isomorphism from a ring to itself.

“Isomorphism” was defined earlier in Section 2.9. Recall that two rings R
and R′ are isomorphic, written R ∼= R′, if there exists an isomorphism
from one to the other. In this case, the rings R and R′ are identical as far
as their ring properties are concerned.

6.2 Examples

• Let n be a positive integer. The function ϕ : Z → Zn given by
ϕ(m) = r, where r is the remainder of m upon division by n, is a
homomorphism, the reduction modulo n homomorphism.

• Let R be a commutative ring with identity and let r ∈ R. For a
polynomial f(x) =

∑n
i=0 aix

i ∈ R[x], denote by f(r) the element of R
obtained by replacing x with r (so f(r) =

∑n
i=0 air

i). The function
ϕr : R[x] → R given by ϕr(f(x)) = f(r) is a homomorphism, the
evaluation homomorphism determined by r.

• Let R and R′ be rings with identity and let σ : R → R′ be a ring
homomorphism. For a polynomial f(x) ∈ R[x], denote by σf(x) the

27



polynomial in R′[x] obtained by applying σ to the coefficients of f(x).
In symbols, if f(x) =

∑
i aix

i, then σf(x) =
∑

i σ(ai)x
i. The function

σ̄ : R[x] → R′[x] given by σ̄(f(x)) = σf(x) is a homomorphism, the
homomorphism induced by σ. (See Section 9.8.)

• Let R be a ring and let I be an ideal of R. The function π : R→ R/I
given by π(r) = r + I is an epimorphism, the canonical epimor-
phism.

6.3 Elementary properties

Recorded here are some standard facts about ring homomorphisms. The
statements are either reiterations of ones already known from group the-
ory (a ring homomorphism is a group homomorphism after all), or ring-
theoretical analogs of such.

Let ϕ : R→ R′ be a ring homomorphism.

6.3.1 Theorem.

(i) ϕ(0) = 0.

(ii) ϕ(−r) = −ϕ(r) for each r ∈ R.

(iii) If S ≤ R, then ϕ(S) ≤ R′.

(iv) If S′ ≤ R′, then ϕ−1(S′) ≤ R.

Proof. Parts (i) and (ii) are known from group theory.

(iii) Let S ≤ R. The set ϕ(S) = {ϕ(s) | s ∈ S} is known to be a sub-
group of (R′,+) by group theory. For every s, t ∈ S, we have st ∈ S, so
ϕ(s)ϕ(t) = ϕ(st) ∈ ϕ(S). This shows that ϕ(S) is closed under multiplica-
tion. Therefore, it is a subring of R′.

(iv) Let S′ ≤ R′. The set ϕ−1(S′) = {r ∈ R |ϕ(r) ∈ S′} is known to be
a subgroup of (R,+) by group theory. For every r, s ∈ ϕ−1(S′), we have
ϕ(r), ϕ(s) ∈ S′, so ϕ(rs) = ϕ(r)ϕ(s) ∈ S′, implying rs ∈ ϕ−1(S′). This
shows that ϕ−1(S′) is closed under multiplication. Therefore, it is a subring
of R.
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6.4 Kernel and image

Let ϕ : R→ R′ be a homomorphism of rings. The kernel of ϕ and the image
of ϕ retain their same meanings from group theory:

• kerϕ = ϕ−1({0}) = {a ∈ R |ϕ(a) = 0}, the kernel of ϕ,

• imϕ = ϕ(R) = {ϕ(a) | a ∈ R}, the image of ϕ.

The kernel of ϕ is a subring of R by Theorem 6.3(iv) with S′ = {0}. In fact,
the kernel of ϕ is even an ideal of R as we will see in the next section. The
image of ϕ is a subring of R′ by Theorem 6.3(iii) with S = R.

6.5 Kernel same thing as ideal

Let R be a ring. The following theorem says that the notions “kernel of a
homomorphism from R” and “ideal of R” amount to the same thing.

6.5.1 Theorem. If ϕ : R → R′ is a homomorphism, then kerϕ is an
ideal of R. Conversely, if I is an ideal of R, then I is the kernel of a
homomorphism, namely, the canonical epimorphism π : R→ R/I.

Proof. Let ϕ : R → R′ be a homomorphism. It was observed in 6.4 that
kerϕ is a subring of R. If a ∈ kerϕ and r ∈ R, then ϕ(ra) = ϕ(r)ϕ(a) =
ϕ(r) · 0 = 0, so ra ∈ kerϕ. This says that kerϕ has the left absorption
property. A similar proof shows that it has the right absorption property as
well, so it is an ideal of R.

Let I be an ideal of R. An element r of R is in the kernel of π if and only if
I = π(r) = r+I, which occurs if and only if r ∈ I. Therefore, I = kerπ.

6.6 Homomorphism is injective iff kernel is trivial

Here is a reminder of a useful criterion from group theory for checking in-
jectivity of a homomorphism.

Let ϕ : R→ R′ be a homomorphism of rings.

6.6.1 Theorem. The homomorphism ϕ is injective if and only if kerϕ =
{0}.
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Proof. Assume that ϕ is injective. Let r ∈ kerϕ. Then ϕ(r) = 0. But
also, ϕ(0) = 0 by Section 6.3. So ϕ(r) = ϕ(0) and injectivity of ϕ gives
r = 0. This shows that kerϕ ⊆ {0}. Since a kernel is a subgroup, the other
inclusion is immediate.

Now assume that kerϕ = {0}. Let r, s ∈ R and assume that ϕ(r) = ϕ(s).
Then ϕ(r − s) = ϕ(r)− ϕ(s) = 0, implying that r − s ∈ kerϕ = {0}. Thus,
r − s = 0, that is, r = s. Therefore, ϕ is injective.

As a practical matter, we observe that, in order to show that a homomor-
phism ϕ is injective, it suffices to show that kerϕ ⊆ {0}, since the other
inclusion always holds (kerϕ is a subgroup).

6.7 Fundamental Homomorphism Theorem

This theorem has an analog for groups. It is a generalization, useful in its
own right, of the main step in the proof of the First Isomorphism Theorem.

Let ϕ : R→ R′ be a homomorphism of rings.

6.7.1 Theorem (Fundamental Homomorphism Theorem). Let I be
an ideal of R with I ⊆ kerϕ. There exists a unique homomorphism

ϕ : R/I → R′

such that ϕπ = ϕ, where π : R → R/I is the canonical epimorphism. The
function ϕ is given by ϕ(r + I) = ϕ(r).

Proof. As in the statement of the theorem, let ϕ : R/I → R′ be the function
given by ϕ(r + I) = ϕ(r).

If r + I = s + I (r, s ∈ R), then r − s ∈ I ⊆ kerϕ, so that ϕ(r) − ϕ(s) =
ϕ(r − s) = 0, implying ϕ(r) = ϕ(s). Thus, ϕ is well defined.

For r + I, s+ I ∈ R/I, we have

ϕ((r + I) + (s+ I)) = ϕ((r + s) + I) = ϕ(r + s)

= ϕ(r) + ϕ(s) = ϕ(r + I) + ϕ(s+ I)

and similarly ϕ((r+ I)(s+ I)) = ϕ(r+ I)ϕ(s+ I), so ϕ is a homomorphism.

For r ∈ R, we have

(ϕπ)(r) = ϕ(π(r)) = ϕ(r + I) = ϕ(r),

30



giving ϕπ = ϕ.

Finally, let ψ : R/I → R′ be a homomorphism such that ψπ = ϕ. Then for
any r + I ∈ R/I we have

ψ(r + I) = ψ(π(r)) = (ψπ)(r) = ϕ(r) = ϕ(r + I),

so that ψ = ϕ, thus establishing uniqueness.

6 – Exercises

6–1 Let R and R′ be rings and let ϕ : R → R′ be a homomorphism.
Assume that R has identity 1.

(a) Prove that if ϕ is surjective, then ϕ(1) is an identity element for R′.

(b) Give an example to show that if ϕ is not surjective, then ϕ(1) need
not be an identity element for R′.

6–2 Let R and R′ be rings and let ϕ : R→ R′ be a homomorphism.

(a) Prove that if J is an ideal of R′, then ϕ−1(J) is an ideal of R.

(b) Prove that if I is an ideal of R and ϕ is surjective, then ϕ(I) is an
ideal of R′.

(c) Give an example to show that, without the assumption of surjectivity
in (b), ϕ(I) need not be an ideal of R′.

6–3 Let R be a ring and let R′ = End(R) be the endomorphism ring of
the underlying abelian group of R (see 1.8). For r ∈ R, define a function
λr : R→ R by λr(s) = rs.

(a) Prove that λr ∈ R′ for each r ∈ R.

(b) Prove that the function ϕ : R→ R′ given by ϕ(r) = λr is a homomor-
phism.

(c) Prove that the function ϕ is a monomorphism if R has an identity.
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7 Isomorphism theorems

7.1 First Isomorphism Theorem

Let ϕ : R → R′ be a homomorphism of rings. By Theorem 6.5, kerϕ is an
ideal of R so the quotient ring R/ kerϕ is defined.

7.1.1 Theorem (First Isomorphism Theorem).

R/ kerϕ ∼= imϕ.

Proof. Put I = kerϕ. By Section 6.7, the function ϕ : R/I → R′ given
by ϕ(r + I) = ϕ(r) is a well-defined homomorphism. By restricting the
codomain to imϕ we obtain an epimorphism R/I → imϕ, which we continue
to denote by ϕ.

Let r + I ∈ kerϕ. Then ϕ(r) = ϕ(r + I) = 0, so that r ∈ kerϕ = I. Thus,
r + I = I. This shows that kerϕ ⊆ {I} so that ϕ is injective (see 6.6).

Therefore, ϕ : R/I → imϕ is an isomorphism and R/ kerϕ = R/I ∼= imϕ.

7.2 Quotient same thing as homomorphic image

Let R be a ring. The following theorem says that the notions “quotient of
R” and “homomorphic image of R” amount to the same thing.

7.2.1 Theorem. If R/I (I / R) is a quotient of R, then R/I is a homo-
morphic image of R, namely, the image under the canonical epimorphism
π : R → R/I. Conversely, the image imϕ = ϕ(R) of R under a homomor-
phism ϕ : R→ R′ is isomorphic to a quotient of R, namely R/ kerϕ.

Proof. Since the canonical epimorphism π : R→ R/I is surjective, its image
is R/I, so the first statement follows. The second statement is given by the
First Isomorphism Theorem (7.1).

7.3 Second Isomorphism Theorem

Let R be a ring, let S be a subring of R and let I be an ideal of R. By
Exercise 7–1, S+I is a subring of R. It contains I as an ideal so the quotient
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ring (S + I)/I is defined. Also, S ∩ I is an ideal of S (as is easily checked),
so the quotient ring S/(S ∩ I) is defined.

7.3.1 Theorem (Second Isomorphism Theorem).

S/(S ∩ I) ∼= (S + I)/I.

Proof. Define ϕ : S → (S+I)/I by ϕ(s) = s+I. Then ϕ is a homomorphism
(it is simply the restriction to S of the canonical epimorphism R→ R/I).

For s ∈ S we have

s ∈ kerϕ ⇐⇒ ϕ(s) = I ⇐⇒ s+ I = I ⇐⇒ s ∈ S ∩ I,

so kerϕ = S ∩ I.

Let x ∈ (S + I)/I. Then x = (s+ a) + I = s+ I for some s ∈ S and a ∈ I,
and we have ϕ(s) = s+ I = x, so ϕ is surjective.

By the First Isomorphism Theorem (7.1),

S/(S ∩ I) = S/ kerϕ ∼= imϕ = (S + I)/I,

and the proof is complete.

7.4 Third Isomorphism Theorem

Let R be a ring and let I and J be ideals of R with J ⊇ I. Then J/I is
an ideal of R/I (as is easily checked), so the quotient ring (R/I)/(J/I) is
defined.

7.4.1 Theorem (Third Isomorphism Theorem).

(R/I)/(J/I) ∼= R/J.

Proof. Let ψ : R → R/J be the canonical epimorphism. Since I ⊆ J =
kerψ, the Fundamental Homomorphism Theorem (6.7) says that the func-
tion ϕ : R/I → R/J given by ϕ(r + I) = ψ(r) = r + J is a well-defined
homomorphism. It follows from the indicated formula that ϕ is surjective.

We claim that kerϕ = J/I. Let r + I ∈ R/I. We first observe that if
r + I ∈ J/I, then r + I = b+ I for some b ∈ J , implying r = b+ a ∈ J for
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some a ∈ I. Using this observation to supply the direction ⇐ of the final
step, we have

r + I ∈ kerϕ ⇐⇒ ϕ(r + I) = J ⇐⇒ r + J = J

⇐⇒ r ∈ J ⇐⇒ r + I ∈ J/I,

so the claim is established.

By the First Isomorphism Theorem (7.1),

(R/I)/(J/I) = (R/I)/ kerϕ ∼= imϕ = R/J,

and the proof is complete.

7.5 Correspondence Theorem

Let ϕ : R→ R′ be an epimorphism of rings. Let

A = {S | kerϕ ⊆ S ≤ R},
A′ = {S′ |S′ ≤ R′}.

In the statement of the following theorem, the notation |T : S| has the same
meaning that it had in group theory; it is the cardinality of the set of (left)
cosets of S in T .

7.5.1 Theorem (Correspondence Theorem).

(a) The map A → A′ given by S 7→ ϕ(S) is a well-defined bijection. Its
inverse map A′ → A is given by S′ 7→ ϕ−1(S′).

(b) For S, T ∈ A, ϕ(S) ⊆ ϕ(T ) if and only if S ⊆ T , and in this case
|ϕ(T ) : ϕ(S)| = |T : S|.

(c) For S, T ∈ A, ϕ(S) / ϕ(T ) if and only if S / T , and in this case
ϕ(T )/ϕ(S) ∼= T/S.

Proof. (a) By 6.3, if S is a subring of R, then ϕ(S) is a subring of R′ so
the map is well defined. By this same section, if S′ is a subring of R′,
then ϕ−1(S′) is a subring of R, and this latter subring contains kerϕ since
ϕ(k) = 0 ∈ S′ for all k ∈ kerϕ. Therefore, the indicated inverse map is
also well defined. It suffices to show that both compositions of these two
functions yield the respective identity maps on A and A′.
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Let S ∈ A. We need to show that ϕ−1(ϕ(S)) = S. Let r ∈ ϕ−1(ϕ(S)).
Then ϕ(r) ∈ ϕ(S), implying that ϕ(r) = ϕ(s) for some s ∈ S. Therefore,

ϕ(r − s) = ϕ(r)− ϕ(s) = 0

so that r − s ∈ kerϕ ⊆ S. It follows that r ∈ S. This gives ϕ−1(ϕ(S)) ⊆ S.
The other inclusion is immediate.

Let S′ ∈ A′. We need to show that ϕ(ϕ−1(S′)) = S′. Let s′ ∈ S′. Since ϕ
is surjective, there exists r ∈ R such that ϕ(r) = s′. But this last equation
says that r ∈ ϕ−1(S′), so s′ ∈ ϕ(ϕ−1(S′)). This gives S′ ⊆ ϕ(ϕ−1(S′)). The
other inclusion is immediate.

(b) Let S, T ∈ A. If ϕ(S) ⊆ ϕ(T ), then, using (a), we have

S = ϕ−1(ϕ(S)) ⊆ ϕ−1(ϕ(T )) = T,

and the other implication is immediate.

Assume that S ⊆ T . We claim that the map f : {t + S | t ∈ T} → {ϕ(t) +
ϕ(S) | t ∈ T} given by f(t+S) = ϕ(t) +ϕ(S) is a well-defined bijection. For
t, t′ ∈ T , we have

t+ S = t′ + S ⇒ t− t′ ∈ S ⇒ ϕ(t)− ϕ(t′) = ϕ(t− t′) ∈ ϕ(S)

⇒ ϕ(t) + ϕ(S) = ϕ(t′) + ϕ(S),

so f is well-defined. Let t, t′ ∈ T and suppose that f(t+S) = f(t′+S). Then
ϕ(t) + ϕ(S) = ϕ(t′) + ϕ(S), implying that ϕ(t − t′) = ϕ(t) − ϕ(t′) ∈ ϕ(S).
Therefore, t− t′ ∈ ϕ−1(ϕ(S)) = S, and so t+S = t′+S. This shows that f
is injective. That f is surjective is immediate, so the claim that f is bijective
is established. We conclude that the domain and the codomain of f have
the same cardinality, that is, |T : S| = |ϕ(T ) : ϕ(S)|.

(c) Let S, T ∈ A and assume that ϕ(S) / ϕ(T ). Using part (a) and Exercise
6–2, we have

S = ϕ−1(ϕ(S)) / ϕ−1(ϕ(T )) = T.

The other implication also follows from Exercise 6–2.

Assume that S / T . The restriction of ϕ to T composed with the canonical
epimorphism yields an epimorphism T → ϕ(T )→ ϕ(T )/ϕ(S) having kernel
ϕ−1(ϕ(S)) = S, so the First Isomorphism Theorem (7.1) completes the
proof.
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7 – Exercises

7–1 Let R be a ring, let S be a subring of R and let I be an ideal of R.
Prove that S+ I is a subring of R, where S+ I = {s+ a | s ∈ S and a ∈ I}.

7–2 Let R be a commutative ring with identity. Prove that R[x]/(x) ∼= R.

7–3 Let R be a ring and put I = {(r, 0) | r ∈ R}. Prove that I is an ideal
of R⊕R and (R⊕R)/I ∼= R.

8 Factorization in an integral domain

8.1 Motivation

8.1.1 Theorem (Fundamental Theorem of Arithmetic). An inte-
ger greater than one can be factored as a product of prime numbers, and
such a factorization is unique up to the order of the factors.

(Here, the word “product” has the usual broad meaning, which includes the
possibility of a single factor.)

This theorem has many uses in the study of the ring of integers. For instance,
it makes possible the notions of the greatest common divisor and the least
common multiple of a collection of integers greater than one. Because of
its usefulness, we seek a generalization of this theorem to other rings. For
convenience, we will restrict our search to integral domains.

The theorem can be thought of as saying that prime numbers are the building
blocks for the integers greater than one. We need a generalization of these
building blocks to our arbitrary integral domain.

The reader most likely learned that a prime number is an integer greater
than one having as positive factors only one and itself. This definition yields
2, 3, 5, 7, 11, and so on.

The words “greater than” and “positive” here create obstacles for any gener-
alization, since the axioms for an integral domain provide no notions of order
or positivity. Nor does it seem likely that reasonable such notions could ex-
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ist in the light of examples of integral domains such as Z5 = {0, 1, 2, 3, 4}:
if you start with 4 and add 2, you get 1, so it is not clear whether 4 > 1 or
4 < 1 makes more sense; also, 2 = −3, so it is not clear whether 2 should be
considered positive or negative.

The first thing to do is to stop insisting that a prime number be positive.
After all, the negatives of the primes are as much like building blocks as the
primes are (e.g., 6 = (−2)(−3)). Also, the negatives of the primes can be
used to build negative integers (e.g., −6 = (−2)(3)) and not just the integers
greater than one as in the theorem.

With this in mind, we amend the old definition and say that a prime integer
is any integer having the property that in any factorization of it, one of the
factors must be either 1 or −1. The key observation is that 1 and −1 are
precisely the units in Z, and the notion of unit is defined using only the
axioms for an integral domain.

As our definition stands, it includes 0 and ±1 as prime integers. There is
good reason to amend the definition to exclude these. The number 0 can
only be a building block for 0 and there can be no unique factorization of
0 (e.g., 0 = (0)(2), 0 = (0)(2)(3)). If we include 1 as a building block,
then again we cannot get a statement of uniqueness of factorization (e.g.,
2 = (1)(2), 2 = (1)(1)(2)) and the same goes for −1. Therefore, we exclude
0 and ±1 by insisting that a prime integer be neither zero nor a unit.

Summarizing,

• a prime integer is an integer p, neither zero nor a unit, having the
property that in any factorization p = mn (m,n ∈ Z), either m or n
is a unit.

A prime number has a second important property, namely, if it divides a
product of two integers, then it must divide one or the other. For instance,
the prime number 5 divides 30 and no matter how we express 30 as a product
of integers, 5 always divides one of the factors:

30 = (2)(15) and 5 | 15,

30 = (−10)(−3) and 5 | −10,

30 = (6)(5) and 5 | 5,

and so on. The nonprime 6 does not have this property, since 6 | 30, but in
the factorization 30 = (3)(10), we have 6 - 3 and 6 - 10.
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So here is a second characterization:

• a prime integer is an integer p, neither zero nor a unit, having the
property that if p | mn (m,n ∈ Z), then either p | m or p | n.

These two characterizations of prime integer are equivalent and they describe
the usual prime numbers together with their negatives: ±2, ±3, ±5, ±7,
±11, and so on.

We alert the reader to a point of terminology. The natural generalizations of
these two characterizations to other integral domains are not always equiv-
alent, so in general one cannot use the same term for both properties as we
have done here with the word “prime”. For this reason, the term “prime”
will be reserved for an element satisfying this second property, but an el-
ement satisfying the first property will be called “irreducible”. (This is
standard, but unfortunate since the first property is the one most closely
related to our usual understanding of prime.)

The general definitions of “irreducible element” and “prime element” are
given in Section 8.3. In Section 8.4 a definition is given for an integral
domain in which a generalization of the Fundamental Theorem of Arithmetic
holds (called a “unique factorization domain”).

8.2 Divisibility and principal ideals

Let R be an integral domain and let r and s in R. We say that r divides s,
written r | s, if s = ra for some a ∈ R. We say that r and s are associates,
written r ∼ s, if r = su for some unit u ∈ R. As the notation suggests, the
property of being associates is an equivalence relation on R.

Here are some examples:

• Let r ∈ R. Then r | 0. However, 0 | r if and only if r = 0.

• (R = Z.) We have 2 | 6 since 6 = (2)(3). For any integer n, we have
−n ∼ n, since −n = n(−1) and −1 is a unit. In fact, for n,m ∈ Z, we
have m ∼ n if and only if m = ±n.

• (R = Q.) Let r, s ∈ Q. If r 6= 0, then r | s, since s = r(s/r). If r and
s are both nonzero, then r ∼ s, since r = s(r/s) and r/s is a unit.
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• (R = R[x].) We have (x + 3) | (x2 + 5x + 6), since x2 + 5x + 6 =
(x+3)(x+2). Since the units in R[x] are precisely the nonzero constant
polynomials, we have f(x) ∼ g(x) if and only if f(x) = r · g(x) for
some nonzero r ∈ R (f(x), g(x) ∈ R[x]).

We collect some elementary facts relating these new notions to principal
ideals.

8.2.1 Theorem. Let r, s ∈ R.

(i) r | s ⇐⇒ s ∈ (r) ⇐⇒ (s) ⊆ (r),

(ii) r ∼ s ⇐⇒ r | s and s | r,

(iii) (r) = (s) ⇐⇒ r ∼ s,

(iv) (r) = R ⇐⇒ r is a unit.

Proof. (i) By Section 3.5 we have (r) = Rr = rR, so

r | s ⇐⇒ s = ra, some a ∈ R ⇐⇒ s ∈ (r) ⇐⇒ (s) ⊆ (r).

(ii) Assume that r ∼ s. Then r = su for some unit u ∈ R. In particular, s | r.
But also, s = ru−1, so r | s as well. Now assume that r | s and s | r. Then
s = ra and r = sb for some a, b ∈ R. This gives r·1 = r = sb = (ra)b = r(ab).
If r 6= 0, then cancellation (which is valid, since R is an integral domain)
gives 1 = ab, so that b is a unit and r ∼ s. On the other hand, if r = 0, then
s = 0 as well, so r = s · 1 implying that r ∼ s.

(iii) Using (i), we have (r) = (s) if and only if r | s and s | r, which holds if
and only if r ∼ s by (ii).

(iv) Since R = (1), we have (r) = R if and only if r ∼ 1 by (iii). Now r ∼ 1
if and only if r = 1u for some unit u ∈ R, which is the case if and only if r
is a unit.

8.3 Irreducible element, prime element

Let R be an integral domain and let r be a nonzero element of R. A unit u
in R always allows for a trivial factorization of r, namely, r = u(u−1r). A
factorization of r that is not of this trivial type is a proper factorization,
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that is, r = st (s, t ∈ R) is a proper factorization if neither s nor t is a unit.
In the following definitions, we say that r is a nonzero nonunit to mean that
r is neither zero nor a unit.

An element r of R is irreducible if

• r is a nonzero nonunit,

• r has no proper factorization.

An element r of R is prime if

• r is a nonzero nonunit,

• r | st (s, t ∈ R) ⇒ r | s or r | t.

8.3.1 Theorem. Let r ∈ R.

(i) The element r is irreducible if and only if (r) is nonzero and maximal
among the proper principal ideals of R.

(ii) The element r is prime if and only if the ideal (r) is nonzero and
prime.

(iii) Every prime element of R is irreducible.

(iv) If every ideal of R is principal, then every irreducible element of R is
prime.

Proof. We make repeated use (without further reference) of Section 8.2.

(i) Assume that r is irreducible. First, (r) is nonzero, since r is nonzero,
and it is proper since r is not a unit. Let s be an element of R such that
(r) ⊆ (s) and (s) is proper. Then s | r so that r = st for some t ∈ R. Now s
is not a unit, since (s) is proper. Therefore t is a unit, since r is irreducible.
Thus, r ∼ s, implying that (r) = (s). We conclude that (r) is nonzero and
maximal among the proper principal ideals of R.

Now assume that (r) is nonzero and maximal among the proper principal
ideals of R. Since (r) is nonzero and proper, r is a nonzero nonunit. Let
r = st (s, t ∈ R) be a factorization of r and assume that s is a nonunit.
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Then (s) is proper and r ∈ (s), which implies that (r) ⊆ (s). By maximality
of (r), we have (r) = (s), so that r ∼ s. This implies that r = su for some
unit u ∈ R. Therefore, st = su and by cancellation, t = u, so that t is a
unit.

(ii) Assume that r is prime. Arguing as above, the ideal (r) is nonzero and
proper. Let s, t ∈ R. Assume that st ∈ (r) and s /∈ (r). Then r | st and
r - s, implying that r | t so that t ∈ (r). This shows that the ideal (r) is
prime.

Now assume that the ideal (r) is prime. Then, as above, r is a nonzero
nonunit. Let s, t ∈ R. Assume that r | st and r - s. Then st ∈ (r) and
s /∈ (r), implying that t ∈ (r) so that r | t. This shows that r is prime.

(iii) Let r be a prime element of R. First, r is a nonzero nonunit. Let r = st
(s, t ∈ R) be a factorization of r. We have st = r · 1, so r | st. Since r is
prime, it follows that either r | s or r | t. Suppose that r | s. Since also
s | r, we get r ∼ s so that r = su for some unit u of R. Then st = su, so
that t = u and t is a unit. The case r | t similarly leads to the conclusion
that s is a unit. Hence, r has no proper factorization, and it is therefore
irreducible.

(iv) Assume that every ideal of R is principal and let r be an irreducible
element of R. By part (i), (r) is maximal among the proper principal ideals
of R, and since every ideal of R is principal, this says that (r) is a maximal
ideal of R. By 5.6, (r) is prime, and so r is prime by part (ii).

Since every ideal of Z is principal, the notions of irreducible integer and
prime integer coincide and describe what we are used to calling the prime
numbers along with their negatives, namely, ±2, ±3, ±5, ±7, ±11, and so
on.

Although a prime element is always irreducible, it is not the case that every
irreducible element is prime (see Exercise 8–1).

8.4 Unique factorization domain

Let R be an integral domain. We say that R is a unique factorization
domain, or UFD for short, if the two following properties are satisfied:

(i) (Existence) Each nonzero nonunit of R can be written as a product
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of irreducible elements;

(ii) (Uniqueness) If r ∈ R has two factorizations, r = s1s2 · · · sm and
r = t1t2 · · · tn with each si and each ti irreducible, then m = n and for
some permutation σ ∈ Sym(m) we have si ∼ tσ(i) for each i.

(As always, “product” allows for the possibility of only one factor.) The
uniqueness statement says that in any two factorizations of an element of R
as a product of irreducible elements the factors can be reordered (if neces-
sary) in such a way that corresponding factors are associates.

So, a UFD is an integral domain in which an analog of the Fundamental
Theorem of Arithmetic holds. In particular, we expect the ring Z of integers
to be a UFD. That this is the case is a consequence of the theorem of Section
8.5. Before stating it, though, we give an example to illustrate the two
statements in the definition of UFD as applied to Z. We take r to be −120,
a nonzero nonunit.

• The factorization−120 = (−2)(2)(2)(3)(5), exhibits−120 as a product
of irreducible elements.

• The factorization −120 = (−3)(2)(5)(−2)(−2), also exhibits −120 as
a product of irreducible elements. This second factorization can be
reordered as −120 = (−2)(−2)(2)(−3)(5) and comparing with the ear-
lier factorization −120 = (−2)(2)(2)(3)(5) we see that corresponding
factors are indeed associates.

A field is a UFD (vacuously since a field has no nonzero nonunits). An
example of an integral domain that is not a UFD is given in Exercises 8–1
and 8–4.

8.5 A PID is a UFD

An integral domain R is a principal ideal domain, or PID for short, if
every ideal of R is principal.

8.5.1 Theorem. Every PID is a UFD.

Proof. Let R be a PID. We begin by proving the existence statement in 8.4
and the proof is by contradiction.
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Suppose there is a nonzero nonunit r in R that cannot be written as a
product of irreducible elements. Then r is not irreducible (since otherwise
it is a product of a single irreducible element according to our convention).
Therefore, r has a proper factorization r = r1r2. Either r1 or r2 cannot be
written as a product of irreducible elements and we are free to assume that
this is the case for r1. Section 8.2 shows that (r) $ (r1). What we have
shown is that a nonzero nonunit of R that cannot be written as product
of irreducible elements generates an ideal that is properly contained in the
ideal generated by another nonzero nonunit of R that cannot be written as a
product of irreducible elements. We conclude that there exists a nonending
sequence

(r) $ (r1) $ (r2) $ · · ·

of principal ideals of R, each properly contained in the next. By Exercise
8–6, the union of these ideals is an ideal of R, and it is equal to (s) for some
s ∈ R since R is a PID. Now s ∈ (ri) for some i, so (s) ⊆ (ri). But then

(s) ⊆ (ri) $ (ri+1) ⊆ (s),

a contradiction. This completes the proof of the existence statement.

Now we prove the uniqueness statement in 8.4. Let r ∈ R. Suppose that r
has two factorizations, r = s1s2 · · · sm and r = t1t2 · · · tn with each si and
each ti irreducible. We proceed by induction on m, assuming, without loss
of generality, that m ≥ n. If m = 1, then s1 = r = t1 and the statement
holds.

Assume that m > 1. We have

s1s2 · · · sm = t1t2 · · · tn,

so sm | t1t2 · · · tn. Since sm is irreducible and R is a PID, sm is prime (see
8.3). Therefore, sm | tj for some j. By interchanging the factors tn and
tj , if necessary, we may (and do) assume that sm | tn. Since tn has no
proper factorization, it must be the case that tn and sm are associates so
that sm = utn for some unit u ∈ R. Substituting this equation into the
earlier one and cancelling tn from both sides yields

s1s2 · · · sm−2s′m−1 = t1t2 · · · tn−1,

where s′m−1 = sm−1u, which is irreducible by Exercise 8–2(a). By the in-
duction hypothesis, m − 1 = n − 1 (implying that m = n) and there ex-
ists σ ∈ Sym(m − 1) such that si ∼ tσ(i) for all 1 ≤ i < m (using that
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sm−1 ∼ s′m−1). Viewing σ as an element of Sym(m) by putting σ(m) = m,
we have sm ∼ tn = tm = tσ(m) as well, and the proof is complete.

Since Z is a PID, the theorem says that Z is also a UFD. The Fundamental
Theorem of Arithmetic now follows as a corollary: Let r be an integer greater
than one. Then r is a nonzero nonunit, so the first property of UFD gives a
factorization of r as a product of irreducibles, that is, a product of integers
that are either prime numbers or negatives of prime numbers. Applying the
absolute value to both sides and using the fact that |mn| = |m||n| produces a
factorization of r as a product of prime numbers. As for uniqueness, suppose
we have two factorizations of r as a product of prime numbers. Since these
prime numbers are irreducible, the second property of UFD insures that both
factorizations have the same number of factors and that after rearranging
the factors (if necessary) the corresponding factors are associates. Since
two positive integers are associates only if they are equal, the uniqueness
statement of the Fundamental Theorem of Arithmetic follows.

Every PID is a UFD, but it is not the case that every UFD is a PID. Indeed
Z[x] is a UFD as we will see in Section 9.7, but it is not a PID (see Exercise
8–5).

8 – Exercises

8–1 Let R = {m + n
√

10 | m,n ∈ Z} and define N : R → Z by N(m +
n
√

10) = m2 − 10n2.

(a) Prove that R is a subring of the ring R of real numbers.

(b) Prove that N(rs) = N(r)N(s) for all r, s ∈ R.

(c) Prove that r ∈ R is a unit if and only if N(r) = ±1.

(d) Prove that 2 is irreducible in R. (Hint: Assume 2 has a proper fac-
torization and use the earlier parts and reduction modulo 5 to get a
contradiction.)

(e) Prove that 2 is not prime in R. (Hint: 6 = (4 +
√

10)(4−
√

10).)

8–2 Let R be an integral domain, let r, s ∈ R, and assume that r ∼ s.
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(a) Prove that if r is irreducible, then so is s.

(b) Prove that if r is prime, then so is s.

Hint: Instead of arguing from the definitions, consider using theorems.

8–3 Let R be a UFD. Prove that every irreducible element of R is prime.

8–4 Give two proofs that the integral domain R of Exercise 8–1 is not a
UFD.

Hint: For an indirect proof, use 8–3. For a direct proof, use that 6 = (2)(3).

8–5 Prove that Z[x] is not a PID.

Hint: Suppose that Z[x] is a PID. Prove that the set I of all polynomials
in Z[x] having even constant term is an ideal. By assumption, I = (f(x))
for some f(x) ∈ Z[x]. Use the fact that 2 ∈ I to draw a conclusion about
f(x), and then use the fact that x ∈ I to get a contradiction.

8–6 Let R be a ring and let I1, I2, . . . be a sequence of ideals of R with
Ii ⊆ Ii+1 for each i. Prove that the union I =

⋃
i Ii is an ideal of R.

9 Polynomial ring

9.1 Definition

Let R be a ring with identity. The polynomial ring over R in the indetermi-
nant x, denoted R[x], was defined informally in Section 1.6. Here, we give
a more rigorous definition.

Let R[x] denote the set of all sequences (ai) = (a0, a1, a2, . . .) (ai ∈ R) that
are eventually zero (meaning, there exists m ∈ N such that ai = 0 for all
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i > m). Define an addition and multiplication on R[x] by

(ai) + (bi) = (ai + bi),

(ai)(bi) = (ci), where ci =
i∑

j=0

ajbi−j .

Then (R[x],+, · ) is a ring.

Define x to be the sequence (0, 1, 0, 0, . . .). A simple proof by induction
shows that for each positive integer i, xi is the sequence with 1 in the ith
position (with position labels starting at 0) and 0’s elsewhere:

xi = (0, . . . , 0, 1
i
, 0, . . .).

Identifying a ∈ R with the sequence (a, 0, 0, . . .) we have

axi = (a, 0, 0, . . .)(0, . . . , 0, 1
i
, 0, . . .) = (0, . . . , 0, a

i
, 0, . . .).

Therefore, if (ai) is an element of R[x], then there exists m ∈ N such that
ai = 0 for all i > m and

(ai) = (a0, a1, a2, . . . , am, 0, . . .)

=
m∑
i=0

(0, . . . , 0, ai
i
, 0, . . .)

= a0 + a1x+ a2x
2 + · · ·+ amx

m.

This brings us back to the traditional notation for polynomials as linear
combinations of powers of x. Since such a linear combination is no longer
just an “expression”, which is a vague notion, but rather a sequence, the
definition of a polynomial is now on firm ground.

It is traditional to use the linear combination form of a polynomial instead of
the sequence form because of the notational and computational convenience
the former affords. For instance, it is easier to write 7x5 than to write
(0, 0, 0, 0, 0, 7, 0, . . .). Also, multiplying small polynomials in linear combi-
nation form by using the distributive law and collecting like terms is usually
easier than applying the formula for multiplying sequences.

The reader may wonder why no fuss is made about the definition of a poly-
nomial in a high school algebra course. It is not just that the level of so-
phistication required to understand a rigorous definition is deemed too high.
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Rather, the sort of definition just given is not appropriate. In high school
algebra, the polynomial f(x) =

∑n
i=0 aix

i is really a function f : R → R,
which is not a vague concept.

If we attempted to define the polynomial f(x) =
∑n

i=0 aix
i ∈ R[x] as the

function R → R sending x to
∑n

i=0 aix
i we would lose something. For

instance, if R = Z2, then the polynomials x and x2 are not equal (since
their corresponding coefficients are not equal), but as functions Z2 → Z2

they are equal since they both send 0 7→ 0 and 1 7→ 1. (For more on the
process of passing from polynomials to polynomial functions, see Exercise
9–2.)

(Incidentally, this sort of collapsing does not happen for polynomial func-
tions R→ R; due to properties of real numbers, the power functions x 7→ xi

(i ∈ N ∪ {0}) are linearly independent over R, so two polynomial functions
are equal if and only if their corresponding coefficients are equal.)

9.2 Degree of polynomial

Let R be an integral domain. Let f(x) be a nonzero polynomial over R and
write f(x) =

∑n
i=0 aix

i with an 6= 0. The degree of f(x), denoted deg f(x),
is the integer n. In other words, the degree of a nonzero polynomial is the
exponent of the highest power of x appearing in the polynomial (assuming
that terms with zero coefficients are suppressed). For example, deg(2+4x2−
5x6) = 6.

It is convenient (as seen in the following theorem) to define the degree of the
zero polynomial to be −∞ and to use the natural conventions that −∞ ≤ n
and −∞+ n = −∞ for every integer n.

Let f(x) and g(x) be polynomials over R.

9.2.1 Theorem.

(i) deg[f(x) + g(x)] ≤ max{deg f(x), deg g(x)},

(ii) deg[f(x)g(x)] = deg f(x) + deg g(x).

Proof. (i) This follows from the observation that if neither f(x) nor g(x)
has a term involving a particular power of x, then neither does their sum.

(ii) Let m = deg f(x) and n = deg g(x) and write f(x) =
∑m

i=0 aix
i and

g(x) =
∑n

i=0 bix
i. The term with the highest power of x appearing in the
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product f(x)g(x) is ambnx
m+n, and ambn 6= 0 since am, bn 6= 0 and R has

no divisors of zero. Therefore, deg[f(x)g(x)] = m+n = deg f(x)+deg g(x).

The assumption in force is that R is an integral domain. If this is changed
so that R is allowed to have divisors of zero, then (ii) is no longer valid.
For instance, if f(x) = 2x and g(x) = 3x, both polynomials over Z6, then
f(x)g(x) = 0, whence

deg[f(x)g(x)] = −∞ < 2 = deg f(x) + deg g(x).

9.3 Division algorithm

Consider the process of dividing 80 by 3 using long division. The algorithm
is repeated until the remainder is less than the number being divided by.
Here, we get an answer of 26 with a remainder of 2. Thus,

80

3
= 26 +

2

3
,

which can be written
80 = (26)(3) + 2.

This illustrates the following fact about the ring of integers:

Let m and n be integers with n > 0. There exist unique integers q and r
with 0 ≤ r < n such that m = qn+ r.

In more familiar terms, m divided by n yields the quotient q with a remainder
of r. This fact is known as the Division Algorithm for integers. (Actually, it
is not an algorithm but rather a theorem; the long division steps for finding
the q and r comprise the division algorithm.)

The reader is probably aware that there is also a long division algorithm
for polynomials over R. The algorithm is repeated until the remainder
has degree less than the degree of the polynomial being divided by. This
algorithm can be carried out for polynomials over any field:

9.3.1 Theorem (Division algorithm). Let F be a field. If f(x) and
g(x) are polynomials over F with g(x) 6= 0, then there exist unique polyno-
mials q(x) and r(x) over F with deg r(x) < deg g(x) such that

f(x) = q(x)g(x) + r(x).
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Proof. Let f(x) and g(x) be polynomials over F with g(x) 6= 0. We begin
with the existence part of the proof. The set

S = {f(x)− q(x)g(x) | q(x) ∈ F [x]}

is nonempty (since f(x) ∈ S), so it has an element r(x) of minimal degree
(with deg r(x) = −∞ being a possibility). Now r(x) = f(x) − q(x)g(x) for
some q(x) ∈ F [x], so f(x) = q(x)g(x)+r(x) and we are done if we can prove
that deg r(x) < deg g(x).

Suppose, to the contrary, that deg r(x) ≥ deg g(x). We have

g(x) =

n∑
i=0

aix
i and r(x) =

m∑
i=0

bix
i

for some ai, bi ∈ F with an, bm 6= 0, where n = deg g(x) and m = deg r(x)
(the expressions making sense since m ≥ n ≥ 0 due to the fact that g(x) 6=
0).

Since an 6= 0, the element a−1n is defined (F is a field), and since m =
deg r(x) ≥ deg g(x) = n, we have xm−n ∈ F [x]. Therefore,

h(x) := r(x)− a−1n bmx
m−ng(x)

is a polynomial over F . The formulas in Section 9.2 show that deg h(x) ≤ m
and, since the coefficient of xm in h(x) is bm − a−1n bman = 0, we have
deg h(x) < m = deg r(x). Substituting r(x) = f(x) − q(x)g(x) into the
definition of h(x) and regrouping gives

h(x) = f(x)− (q(x) + a−1n bmx
m−n)g(x) ∈ S.

But this contradicts the definition of r(x) as an element of S of minimal
degree. We conclude that deg r(x) < deg g(x) and the existence statement
is established.

Next we turn to the uniqueness statement. Suppose that also f(x) =
q′(x)g(x) + r′(x) with q′(x), r′(x) ∈ F [x] and deg r′(x) < deg g(x). We
have

r(x)− r′(x) = [f(x)− q(x)g(x)]− [f(x)− q′(x)g(x)] = [q′(x)− q(x)]g(x).

If q(x) 6= q′(x), then we get the contradiction

deg g(x) > max{deg r(x),deg r′(x)} ≥ deg[r(x)− r′(x)]

= deg[(q′(x)− q(x))g(x)] = deg[q′(x)− q(x)] + deg g(x)

≥ deg g(x),
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since deg[q′(x)− q(x)] ≥ 0. Therefore, q′(x) = q(x) and the earlier equation
gives r′(x) = r(x) as well. This completes the proof.

9.4 Zeros of a polynomial

Let R be a commutative ring with identity and let f(x) =
∑n

i=0 aix
i be a

polynomial over R. An element r of R is a zero of f(x) if f(r) = 0, where
f(r) =

∑n
i=0 air

i.

For example, the number 3 is a zero of the polynomial f(x) = 6− 5x+x2 ∈
R[x], since f(3) = 6− 5(3) + 32 = 0.

9.4.1 Theorem. Assume that R is a field.

(i) The element r of R is a zero of f(x) if and only if x− r divides f(x).

(ii) If f(x) is nonzero, then it has at most deg f(x) zeros in R.

Proof. (i) Let r ∈ R. Assume that r is a zero of f(x). By the division
algorithm (9.3), there exist polynomials q(x) and s(x) overR with deg s(x) <
deg(x−r) = 1 such that f(x) = q(x)(x−r)+s(x). Now deg s(x) is 0 or −∞,
so in either case s(x) is constant. Since 0 = f(r) = q(r)(r− r)+s(r) = s(r),
it follows that s(x) is the zero polynomial. Therefore, f(x) = q(x)(x − r),
and x− r divides f(x).

Now assume that x − r divides f(x). Then f(x) = q(x)(x − r) for some
q(x) ∈ R[x]. Thus, f(r) = q(r)(r − r) = 0, and r is a zero of f(x).

(ii) Assume that f(x) is nonzero, so in particular deg f(x) ≥ 0. We prove
that f(x) has at most deg f(x) zeros by using induction on the degree of f(x).
If deg f(x) = 0, then f(x) is a nonzero constant polynomial and therefore it
has no zeros in accordance with the statement. Assume that deg f(x) > 0.
If f(x) has no zeros, then the statement holds, so assume that f(x) has a
zero r ∈ R. By part (i), x − r divides f(x) so that f(x) = q(x)(x − r) for
some q(x) ∈ R[x]. If s ∈ R is a zero of f(x) and s 6= r, then s is a zero of q(x)
since 0 = f(s) = q(s)(s− r) and s− r 6= 0. It follows that f(x) has at most
one more zero than q(x) has. Now deg q(x) = deg f(x) − 1 < deg f(x), so
q(x) has at most deg q(x) zeros by the induction hypothesis. Therefore, f(x)
has at most deg q(x) + 1 = deg f(x) zeros, and the proof is complete.
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9.5 Irreducible polynomial

Let R be an integral domain and let f(x) ∈ R[x]. The polynomial f(x) is
irreducible over R if it is irreducible as an element of the integral domain
R[x], that is, it is a nonzero nonunit that does not have a proper factorization
(see Section 8.3). A factorization is proper if neither factor is a unit, the
units in this setting being precisely the units of R viewed as constant (degree
zero) polynomials.

A polynomial that is a nonzero nonunit is reducible if it is not irreducible,
that is, if it has a proper factorization.

• The polynomial x2−2 is reducible over R since x2−2 = (x+
√

2)(x−√
2), a proper factorization in R[x].

• The polynomial x2 +1 is reducible over C since x2 +1 = (x+ i)(x− i),
a proper factorization in C[x].

• The polynomial 2x + 2 is reducible over Z since 2x + 2 = 2(x + 1), a
proper factorization in Z[x].

• We claim that the polynomial f(x) = x5 + 5x2 − x − 2 is reducible
over R. Since f(0) = −2 and f(1) = 3, and the polynomial function
induced by f(x) (see Exercise 9–2) is continuous, the Intermediate
Value Theorem implies that f(x) has a zero r (between 0 and 1). By
the theorem of Section 9.4, x−r divides f(x), so that f(x) = (x−r)g(x)
for some g(x) ∈ R[x]. By the theorem of Section 9.2, g(x) has degree
4, so this is a proper factorization of f(x).

Showing that a given polynomial is irreducible is often difficult. For irre-
ducibility over a field one can sometimes use the following observation about
a proper factorization, together with a proof by contradiction.

9.5.1 Theorem. Assume that R is a field. If f(x) is nonzero and it has
a proper factorization f(x) = g(x)h(x), then deg g(x),deg h(x) < deg f(x).

Proof. Suppose that f(x) is nonzero and that it has the indicated proper
factorization. By Section 9.2, we have deg f(x) = deg g(x) + deg h(x). Now
h(x) is nonconstant, since it is neither zero nor a unit, so deg h(x) > 0,
implying

deg g(x) < deg g(x) + deg h(x) = deg f(x).

Similarly, deg h(x) < deg f(x).
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As mentioned above, the polynomial 2x + 2 has the proper factorization
2x+ 2 = 2(x+ 1) over Z, so the theorem can fail to hold if R is not assumed
to be a field.

Here are some examples to illustrate uses of the theorem:

• We claim that the polynomial f(x) = x2 − 2 is irreducible over Q.
Suppose otherwise. Then it follows from the theorem that f(x) has
a linear factor a1x + a0. But this implies that the rational number
r = −a0/a1 is a zero of f(x). Now f(x) has at most two zeros in R by
Section 9.4 and we know that ±

√
2 are both zeros of f(x). Therefore,

r = ±
√

2, contradicting that
√

2 is irrational. We conclude that f(x)
is irreducible over Q as claimed.

• We claim that the polynomial f(x) = x3+x2+2 ∈ Z3[x] is irreducible.
Suppose otherwise. Since Z3 is a field, the theorem applies and it
follows as in the preceding example that f(x) has a linear factor and
hence a zero r ∈ Z3 = {0, 1, 2}. But f(0) = 2, f(1) = 1, and f(2) = 2,
so f(x) has no zeros. We conclude that f(x) is irreducible as claimed.

Other irreducibility criteria are given in Section 10.

9.6 F[x] is PID if F is field

Let F be a field.

9.6.1 Theorem. The polynomial ring F [x] is a PID.

Proof. We first check that F [x] is an integral domain. The ring F [x] is
commutative by Exercise 9–1. The constant polynomial 1 is an identity in
F [x]. Let f(x) and g(x) be two polynomials over F . Assume that f(x)g(x) =
0 and f(x) 6= 0. By Section 9.2,

−∞ = deg 0 = deg[f(x)g(x)] = deg f(x) + deg g(x)

and, since deg f(x) 6= −∞, it must be the case that deg g(x) = −∞, that
is, g(x) = 0. This shows that F [x] has no divisors of zero. Hence F [x] is an
integral domain.

Let I be an ideal of F [x]. We claim that I is principal. If I = 0, then
I = (0) and the claim holds. Suppose that I 6= 0. Then I contains a
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nonzero polynomial, and hence a polynomial g(x) of minimal degree among
the nonzero elements of I.

We claim that I = (g(x)). The inclusion I ⊇ (g(x)) is immediate so we
turn to the other inclusion. Let f(x) ∈ I. By the division algorithm, there
exist polynomials q(x) and r(x) over F with deg r(x) < deg g(x) such that
f(x) = q(x)g(x) + r(x). Now

r(x) = f(x)− q(x)g(x) ∈ I

and, since g(x) has minimal degree among the nonzero elements of I, we
conclude that r(x) = 0. Thus f(x) = q(x)g(x) ∈ (g(x)), and the equality
I = (g(x)) is established.

In particular, F [x] is a UFD (see Section 8.5).

9.7 If R is a UFD, then so is R[x]

9.7.1 Theorem. If R is a UFD, then the polynomial ring R[x] is a UFD.

Proof. (Omitted.)

Here are some applications of the theorem:

• Since Z is a UFD, so is Z[x].

• A field F is a UFD, so F [x] is a UFD as well. In fact, F [x] is even a
PID for each field F (see Section 9.6).

• If R is a UFD, then so is the ring of polynomials over R in n inde-
terminants R[x1, x2, . . . , xn] (n ∈ N) defined recursively by putting
R[x1, x2, . . . , xn] ∼= R[x1, x2, . . . , xn−1][xn]. This claim follows imme-
diately from the theorem by using induction on n.

9.8 Induced homomorphism of polynomial rings

Let R and R′ be commutative rings with identity and let σ : R → R′

be a homomorphism. For f(x) ∈ R[x], denote by σf(x) the polynomial
over R′ obtained by applying σ to each coefficient of f(x). In symbols, if
f(x) =

∑n
i=0 aix

i, then σf(x) =
∑n

i=0 σ(ai)x
i.
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9.8.1 Theorem. The function σ̄ : R[x]→ R′[x] given by σ̄(f(x)) = σf(x)
is a homomorphism.

Proof. See Exercise 9–3.

The homomorphism σ̄ : R[x] → R′[x] is the homomorphism induced by
the homomorphism σ : R→ R′.

Let n be a positive integer. If σ : Z → Zn is the reduction modulo n
homomorphism, then the induced homomorphism σ̄ : Z[x] → Zn[x] is also
the reduction modulo n homomorphism.

For example, if f(x) = 5x4 + 8x3 − 3x2 + x − 2 ∈ Z[x], then the image of
f(x) after applying reduction modulo 3 is 2x4 + 2x3 + x+ 1 ∈ Z3[x].

9 – Exercises

9–1 Let R be a commutative ring with identity. Prove that R[x] is com-
mutative.

9–2 Let R be a commutative ring with identity. Define ϕ : R[x] → RR

by ϕ(f(x))(r) = ϕr(f(x)) = f(r). Here, RR is the ring of functions from R
to R (see Section 1.5) and ϕr is the evaluation homomorphism determined
by r (see Section 6.2). The function ϕ(f(x)) : R → R is the polynomial
function induced by the polynomial f(x).

(a) Prove that ϕ is a homomorphism.

(b) Give an example to show that ϕ need not be surjective.

(c) Prove that if R = Z2, then R[x]/ kerϕ ∼= Z2 ⊕ Z2.

Hint: See the second paragraph of Section 1.5.

9–3 Let R and R′ be commutative rings with identity and let σ : R →
R′ be a homomorphism. Prove that the map σ̄ : R[x] → R′[x] given by
σ̄(f(x)) = σf(x) defined in Section 9.8 is indeed a ring homomorphism as
claimed.
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10 Irreducibility over Q

10.1 Irreducible over Z implies irreducible over Q

Let f(x) be a polynomial of degree n > 0 over Z. If f(x) does not factor as
a product of two polynomials over Z each of degree strictly less than n, then
it does not follow immediately that the same is true if the two polynomials
are allowed to have coefficients in the larger ring Q.

In fact, sometimes it happens that a polynomial is irreducible over one ring,
but not over a larger ring. For instance, x2 + 1 is irreducible over R, but
over C it factors as (x+ i)(x− i).

Nonetheless, it is the case that if f(x) is irreducible over Z, then it is
irreducible over Q as well. This fact is stated in the theorem below. In
order to prove the theorem we need a definition and a lemma.

The polynomial f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ Z[x] is primitive if
its coefficients are relatively prime, that is, if gcd(a0, a1, a2, . . . , an) = 1.

10.1.1 Lemma (Gauss). A product of primitive polynomials is primitive.

Proof. We use the observation that f(x) ∈ Z[x] is primitive if and only if
σpf(x) 6= 0 for every prime number p, where σp : Z → Zp is the reduction
modulo p homomorphism.

Let f(x), g(x) ∈ Z[x] be primitive polynomials and let p be an arbitrary
prime number. Since Zp[x] is an integral domain and σpf(x), σpg(x) 6= 0,
we have (writing (fg)(x) for f(x)g(x))

σp(fg)(x) = σ̄p[f(x)g(x)] = σ̄p[f(x)]σ̄p[g(x)] = [σpf(x)][σpg(x)] 6= 0,

where σ̄p : Z[x] → Zp[x] is the homomorphism induced by σp (see Section
9.8). Therefore, f(x)g(x) is primitive.

10.1.2 Theorem. Let f(x) be a nonconstant polynomial over Z.

(i) If f(x) factors over Q as f(x) = g(x)h(x), then it factors over Z
as f(x) = g1(x)h1(x) with deg g1(x) = deg g(x) and deg h1(x) =
deg h(x).

(ii) If f(x) is irreducible over Z, then it is irreducible over Q.
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(iii) If f(x) is primitive and irreducible over Q, then it is irreducible over
Z.

Proof. (i) Let f(x) = g(x)h(x) be a factorization of f(x) with g(x), h(x) ∈
Q[x].

We may (and do) assume that the coefficients of g(x) all have the same de-
nominator b ∈ Z. Let a be the greatest common divisor of the numerators of
the coefficients of g(x). Then g(x) = (a/b)g′(x) with g′(x) a primitive poly-
nomial over Z. Doing the same thing for the polynomial h(x), multiplying
the leading fractions and reducing, we conclude that

f(x) = (a/b)g′(x)h′(x)

for some primitive polynomials g′(x), h′(x) ∈ Z[x] with deg g′(x) = deg g(x)
and deg h′(x) = deg h(x), and some relatively prime integers a and b.

We claim that b = ±1. Suppose otherwise. Then b is divisible by a prime
number p. Now bf(x) = ag′(x)f ′(x) and, since p divides the coefficient
of every term on the left, it also divides the coefficient of every term on
the right. Since a and b are relatively prime, it follows that p divides the
coefficient of every term of g′(x)f ′(x). But this product is primitive by
Gauss’s lemma, so this is a contradiction. Therefore, b = ±1 as claimed.

Therefore, f(x) = g1(x)h1(x), where g1(x) = (a/b)g′(x) = ±ag′(x) ∈ Z[x]
and h1(x) = h′(x) ∈ Z[x]. Moreover, g1(x) and h1(x) have the same degrees
as g(x) and h(x), respectively.

(ii) We prove the contrapositive. Assume that f(x) is not irreducible over
Q. Since f(x) is nonconstant, it is a nonzero nonunit, so it has a proper
factorization f(x) = g(x)h(x) with g(x) and h(x) nonconstant polynomials
over Q. By part (i), f(x) = g1(x)h1(x) with g1(x), h1(x) ∈ Z[x], deg g1(x) =
deg g(x) > 0, and deg h1(x) = deg h(x) > 0. So f(x) is not irreducible over
Z.

(iii) Assume that f(x) is primitive and irreducible over Q. First, f(x) is
a nonzero nonunit in Z[x] (since it is so in Q[x]). Let f(x) = g(x)h(x) be
a factorization of f(x) with g(x) and h(x) polynomials over Z. Since g(x)
and h(x) are polynomials over Q as well, and since f(x) is irreducible over
Q, one or the other of these polynomials must be a unit in Q[x] and hence
constant. We may (and do) assume that g(x) = b0 ∈ Z. Now f(x) = b0h(x)
so the coefficient of every term of f(x) is divisible by b0. Since f(x) is
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primitive, we conclude that g(x) = b0 = ±1, a unit in Z[x]. This shows that
f(x) is irreducible over Z.

10.2 Rational root theorem

Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n be a polynomial of degree n > 0
over Z.

10.2.1 Theorem (Rational root theorem). If r ∈ Q is a zero of the
polynomial f(x), then r = c/d for some c, d ∈ Z with c | a0 and d | an.

Proof. Let r ∈ Q be a zero of f(x). We can write r = c/d with c and d
relatively prime integers. Clearing denominators in the equation f(c/d) = 0
gives

0 = a0d
n + a1cd

n−1 + · · ·+ an−1c
n−1d+ anc

n

so that
−a0dn = c(a1d

n−1 + · · ·+ an−1c
n−2d+ anc

n−1).

This shows that c divides −a0dn. Since c and d are relatively prime, it
follows that c | a0. Solving the above equation for −ancn instead similarly
reveals that d | an.

• We claim that the polynomial f(x) = 2 + x− 4x2 + 3x3 is irreducible
over Q. If it is not irreducible, then it has a linear factor and hence
a zero in Q. Therefore, it is enough to show that it has no rational
zeros. The divisors of 2 are ±1 and ±2 and the divisors of 3 are ±1
and ±3. According to the rational root theorem, the only candidates
for rational zeros of f(x) are

±1,±2,±1

3
,±2

3

and a straightforward check shows that none of these is a zero.

10.3 Reduction modulo a prime

Let f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a polynomial over Z, let p be a
prime number that does not divide an, and let σ : Z→ Zp be the reduction
modulo p homomorphism. Recall that σf(x) denotes the polynomial over
Zp obtained by applying σ to each coefficient of f(x).
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10.3.1 Theorem. If σf(x) is irreducible in Zp[x], then f(x) is irreducible
over Q.

Proof. Assume that σf(x) is irreducible in Zp[x]. By way of contradiction,
assume that f(x) is not irreducible over Q. Since σf(x) is a nonzero nonunit,
it is nonconstant, so f(x) is nonconstant as well and is therefore a nonzero
nonunit in Q[x]. It follows that f(x) has a proper factorization and hence
a factorization f(x) = g(x)h(x) over Q with deg g(x),deg h(x) < deg f(x)
(see Section 9.5). By (i) of Section 10.1, we may (and do) assume that
g(x), h(x) ∈ Z[x].

We have deg σf(x) = deg f(x) (since p - an), deg σg(x) ≤ deg g(x), and
deg σh(x) ≤ deg h(x). Therefore, since σf(x) = [σg(x)][σh(x)],

deg f(x) = deg σf(x) = deg σg(x) + deg σh(x)

≤ deg g(x) + deg h(x) = deg f(x),

and the equality of the ends forces the equalities deg σg(x) = deg g(x) and
deg σh(x) = deg h(x). In particular, σg(x) and σh(x) both have degrees
strictly less than the degree of f(x), which is the same as the degree of
σf(x). This shows that the factorization σf(x) = [σg(x)][σh(x)] is proper,
contradicting the irreducibility of σf(x).

We conclude that f(x) is irreducible over Q.

• We claim that the polynomial f(x) = x5 + 8x4 + 3x2 + 4x + 7 is
irreducible over Q. Taking p = 2 in the theorem, we see that it is
enough to show that σf(x) = x5 +x2 + 1 is irreducible in Z2[x]. First,
neither 0 nor 1 is a zero of σf(x), so this polynomial has no linear
factor. Next, the only quadratic polynomials over Z2 are x2, x2 + x,
x2+1, and x2+x+1. The first three of these have zeros in Z2 (namely,
0, 0, and 1, respectively), so none can be a factor of σf(x) since, as we
have already seen, σf(x) has no zeros. Using long division, one sees
that the remaining quadratic x2 +x+1 does not divide σf(x). Since a
proper factorization of σf(x) would necessarily involve either a linear
factor or a quadratic factor, we conclude that σf(x) is irreducible and
the claim is established.
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10.4 Eisenstein’s criterion

Let f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a nonconstant polynomial over
Z and let p be a prime number.

10.4.1 Theorem (Eisenstein’s criterion). If the following are satis-
fied, then f(x) is irreducible over Q:

(i) p2 - a0,

(ii) p | ai for 0 ≤ i < n,

(iii) p - an.

Proof. Assume that the three conditions are satisfied. Suppose that f(x)
is not irreducible over Q. By assumption, f(x) is nonconstant and hence
a nonzero nonunit in Q[x]. Therefore, it must have a proper factorization
and, using (i) of 10.1, we conclude that f(x) = g(x)h(x) with g(x) and h(x)
nonconstant polynomials over Z. Let σ : Z → Zp be the reduction modulo
p homomorphism. By (ii), σf(x) = σ(an)xn and by (iii), σ(an) is nonzero
and hence a unit in the field Zp. Now

σ(an)xn = σf(x) = [σg(x)][σh(x)],

and since x is an irreducible element of the UFD Zp[x] (see 9.6 and 8.5), we
conclude that σg(x) = rlx

l and σh(x) = smx
m for some l,m ∈ N∪{0} with

rl and sm nonzero elements of Zp. Since l ≤ deg g(x) and m ≤ deg h(x), we
have, using equations from above,

n = l +m ≤ deg g(x) + deg h(x) = deg f(x) = n,

which forces l = deg g(x) > 0 and m = deg h(x) > 0. In particular, the
constant terms of σg(x) and σh(x) are both zero. This, in turn, implies
that the constant terms of g(x) and h(x) are both divisible by p. However,
the constant term a0 of f(x) is the product of these latter constant terms,
so we get p2 | a0 in opposition to (i).

We conclude that f(x) is irreducible over Q as claimed.

• The polynomial 2x5 − 6x3 + 9x2 − 15 ∈ Z[x] is irreducible over Q by
Eisenstein’s criterion with p = 3.
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10.5 Shift of indeterminate

Let f(x) =
∑n

i=0 aix
i be a polynomial over Z and let c be an integer.

Denote by f(x + c) the polynomial obtained from f(x) by replacing each
occurrence of the indeterminate x by the “shifted indeterminate” x+c, that
is, f(x+ c) =

∑n
i=0 ai(x+ c)i.

10.5.1 Theorem. If f(x+c) is irreducible over Z, then f(x) is irreducible
over Z and is therefore irreducible over Q if it is nonconstant.

Proof. Assume that f(x+ c) is irreducible over Z. The map ϕx+c : Z[x]→
Z[x] given by ϕx+c(f(x)) = f(x + c) is an isomorphism (the proof that
the evaluation map is a homomorphism easily generalizes to show that this
map is a homomorphism as well, and this map is bijective since ϕx−c is an
inverse). Since f(x+ c) is irreducible over Z (which means after all that it
is an irreducible element of the ring Z[x]), and since it corresponds to f(x)
under the isomorphism, we conclude that f(x) is also irreducible over Z.

Finally, assuming f(x) is nonconstant, it follows from (ii) of 10.1 that f(x)
is irreducible over Q.

• Let p be a prime number. The polynomial f(x) = (xp − 1)/(x− 1) =
xp−1 +xp−2 + · · ·+x+ 1 ∈ Z[x] is the p th cyclotomic polynomial.
We claim that f(x) is irreducible over Q. By the theorem, it suffices
to show that the polynomial f(x+ 1) is irreducible over Z. Using the
binomial theorem, we get

f(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1

=
(xp +

(
p
1

)
xp−1 + · · ·+

(
p
p−1
)
x+ 1)− 1

x

= xp−1 +

(
p

1

)
xp−2 + · · ·+

(
p

p− 2

)
x+

(
p

p− 1

)
.

Now p divides each binomial coefficient
(
p
i

)
with 0 < i < p and p2 - p =(

p
p−1
)
, so f(x+ 1) is irreducible over Q by Eisenstein’s criterion. Since

the coefficient of xp−1 is one, the polynomial f(x+ 1) is primitive, so
it is irreducible over Z as well by (iii) of 10.1. This establishes the
claim.
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10 – Exercises

10–1 Prove that the polynomial f(x) = 3x4 + 8x3 + 8x2 − 2x − 3 is irre-
ducible over Q.

Hint: Consider f(x− 1).

10–2 Prove that the polynomial f(x) = 3x2−7x−5 is irreducible over Q.

11 Vector space

11.1 Definition

Let F be a field. A vector space over F is a triple (V,+, · ), where (V,+)
is an abelian group and · is a function F × V → V (written (a, v) 7→ av)
satisfying the following for all a, b ∈ F and all v, w ∈ V :

(i) a(v + w) = av + aw,

(ii) (a+ b)v = av + bv,

(iii) a(bv) = (ab)v,

(iv) 1v = v.

Let (V,+, · ) be a vector space over F . The elements of V are called vectors,
the elements of F are called scalars, and the function · is called scalar
multiplication. Parts (i) and (ii) are both distributive properties. Part
(iii) is the associative property of scalar multiplication. If the operations
are clear from context, we say that V is a vector space over F .

11.2 Examples

• Let F be a field and let n be a positive integer. The set Fn of n-tuples
of elements of F is a vector space over F with componentwise addition
and with scalar multiplication defined by

a(a1, a2, . . . , an) = (aa1, aa2, . . . , aan).
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In particular, Rn is a vector space over R.

• Let F be a field. The polynomial ring F [x] is a vector space over F with
addition being addition of polynomials and with scalar multiplication
being given by

a(a0 + a1x+ a2x
2 + · · ·+ anx

n) = aa0 + aa1x+ aa2x
2 + · · ·+ aanx

n.

• Let F be a field and let n be a positive integer. The set Matn(F ) of
n × n matrices over F is a vector space with addition being matrix
addition and scalar multiplication being defined by

a[aij ] = [aaij ]

• Let E be a field and let F be a subfield of E (meaning that F is a
subring of E and it is also a field). It follows immediately from the
ring axioms that E is a vector space over F if we take as addition the
addition in E and as scalar multiplication the product in E.

• Let F be a field. An algebra over F is a pair (R,ϕ) where R is a ring
with identity and ϕ : F → R is a homomorphism such that ϕ(1) = 1
and im f is contained in the center of R.

Let (R,ϕ) be an F -algebra. Then R is a vector space over F with
addition being that in R and scalar multiplication being defined by
ar = ϕ(a)r. The examples above are all algebras with ϕ given, respec-
tively, as follows:

R→ Rn by a 7→ (a, . . . , a),
F → F [x] by a 7→ a (constant polynomial),
F → Matn(F ) by a 7→ aI (scalar matrix),
F → E by a 7→ a.

Since ϕ is nonzero, its kernel is trivial (being a proper ideal in the field
F ), so that ϕ is injective. Therefore, F is isomorphic to its image under
ϕ, which is a subring of R containing the element 1. It is convenient
to use this isomorphism to view F as a subring of R.

11.3 Basic identities

Let F be a field and let V be a vector space over F .
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11.3.1 Theorem.

(i) 0v = 0 for all v ∈ V ,

(ii) a0 = 0 for all a ∈ F ,

(iii) (−a)v = −av and a(−v) = −av for all a ∈ F, v ∈ V .

Proof. (i) Let v ∈ V . Since 0v + 0v = (0 + 0)v = 0v, cancellation gives
0v = 0.

(ii) Let a ∈ F . Since a0 + a0 = a(0 + 0) = a0, cancellation gives a0 = 0.

(iii) Let a ∈ F and v ∈ V . Since av + (−a)v = (a+ (−a))v = 0v = 0 (using
part (i)), we have (−a)v = −av.

Since av+a(−v) = a(v+ (−v)) = a0 = 0 (using part (ii)), we have a(−v) =
−av

11.4 Subspace

Let F be a field and let V be a vector space over F . A subspace of V is a
subgroup of (V,+) that is closed under scalar multiplication. Thus, a subset
W of V is a subspace if and only if

(i) 0 ∈W ,

(ii) w,w′ ∈W ⇒ w + w′ ∈W ,

(iii) w ∈W ⇒ −w ∈W ,

(iv) a ∈ F,w ∈W ⇒ aw ∈W.

We write W ≤ V to indicate that W is a subspace of V . Both V and {0}
are subspaces of V .

• Let n be a positive integer. For each 1 ≤ k ≤ n, the set

{(0, . . . 0, a
k
, 0, . . . , 0) | a ∈ F}

is a subspace of Fn.
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• Let n be a nonnegative integer. The set of all polynomials over F of
degree ≤ n is a subspace of F [x].

• Let n be a positive integer. The set

{[aij ] | aij = 0 for all i > j}

of all upper triangular n×n matrices over F is a subspace of Matn(F ).

11.5 Quotient space

Let V be a vector space and let W be a subspace of V . Then W is a subgroup
of the additive group (V, + ) and, since this latter group is abelian, W is
normal. Therefore, the quotient group V/W is defined and it is abelian.
In fact, the naturally defined scalar multiplication makes this group into a
vector space.

In more detail, V/W = {v+W | v ∈ V } is a vector space with addition and
scalar multiplication given by

(i) (v +W ) + (v′ +W ) = (v + v′) +W ,

(ii) a(v +W ) = (av) +W .

These operations are well-defined, meaning that they do not depend on the
choices of coset representatives. V/W is the quotient of V by W .

11.6 Span

Let F be a field, let V be a vector space over F , and let S be a subset of V .
The span of S, written 〈S〉, is the intersection of all subspaces of V that
contain S:

〈S〉 =
⋂
W≤V
W⊇S

W.

Since an intersection of subspaces is again a subspace, the span of S is a
subspace of V . It is the smallest subspace of V containing S in the sense
that if W is a subspace of V containing S, then 〈S〉 ⊆W .

The subset S spans V if 〈S〉 = V . To show S spans V it is enough to show
V ⊆ 〈S〉 since the other inclusion always holds.
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Assume S = {v1, v2, . . . , vn}, a finite set. We write 〈v1, v2, . . . , vn〉 instead
of 〈{v1, v2, . . . , vn}〉 and call it the span of the vectors v1, v2, . . . , vn.

11.6.1 Theorem. 〈v1, v2, . . . , vn〉 = {a1v1 + a2v2 + · · ·+ anvn | ai ∈ F}.

Proof. One checks that the right-hand side is a subspace of V . It contains
each vi (since one can let ai = 1 and aj = 0, j 6= i), so it contains the
left-hand side. On the other hand, every subspace of V containing each vi
must contain the right-hand side by the closure properties, so the left-hand
side contains the right-hand side. Therefore, the stated equality holds.

The elements in the set on the right are linear combinations of the vectors
v1, v2, . . . , vn.

• Let v1 = (1, 0, 0) and v2 = (0, 1, 0) in R3. Then

〈v1, v2〉 = {(x, y, 0) |x, y ∈ R},

the xy-plane.

• Let v1 = (1, 1) and v2 = (−1, 1) in R2. Then the set S = {v1, v2}
spans R2. Indeed, if (x, y) ∈ R2, then (x, y) = a1v1 + a2v2 ∈ 〈S〉,
where a1 = (x+ y)/2 and a2 = (y − x)/2, whence R2 ⊆ 〈S〉.

11.7 Linear independence

Let F be a field, let V be a vector space over F , and let S = {v1, v2, . . . , vn}
be a finite subset of V . The set S is linearly independent if

a1v1 + a2v2 + · · ·+ anvn = 0 ⇒ ai = 0 for all i

(ai ∈ F ). In other words, the set S is linearly independent if and only if the
only way to get a linear combination of the vectors in S to equal the zero
vector is to use all zero coefficients.

If S is not linearly independent, then it is linearly dependent. Thus, S
is linearly dependent if and only if there exists a linear combination of the
vectors in S equaling zero with coefficients not all zero.

Sometimes, instead of saying the set S = {v1, v2, . . . , vn} is linearly inde-
pendent, we say that the vectors v1, v2, . . . , vn are linearly independent (and
similarly for linear dependence).
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• We claim that the vectors v1 = (1, 1) and v2 = (−1, 1) of R2 are
linearly independent. Suppose we have a1v1 + a2v2 = 0 (ai ∈ R).
Then

(0, 0) = a1(1, 1) + a2(−1, 1) = (a1 − a2, a1 + a2)

implying a1−a2 = 0 and a1+a2 = 0. Solving this system yields a1 = 0
and a2 = 0. This establishes the claim.

• We claim that S is linearly dependent if it contains the zero vector.
We assume, without loss of generality, that v1 = 0. Then

1v1 + 0v2 + 0v3 + · · ·+ 0vn = 0.

Since not all coefficients are zero, the claim is established.

11.8 Basis

Let F be a field and let V be a vector space over F . A basis for V is a
subset of V that spans V and is linearly independent. Thus, the subset
S = {v1, v2, . . . , vn} of V is a basis for V if and only if

(i) V = 〈v1, v2, . . . , vn〉,

(ii) v1, v2, . . . , vn are linearly independent.

According to Section 11.6, property (i) is equivalent to the statement that
every v ∈ V can be written in the form v = a1v1 + a2v2 + · · · + anvn for
some ai ∈ F .

The plural of basis is “bases”.

• Let e1 = (1, 0) and e2 = (0, 1). The set {e1, e2} spans R2 and
it is linearly independent, so it is a basis for R2. More generally,
if n is a positive integer, then the set {e1, e2, . . . , en}, where ei =
(0, . . . , 0, 1

i
, 0, . . . , 0), is a basis for Fn, the standard basis.

• In view of the examples in the last two sections, the set {v1, v2}, where
v1 = (1, 1) and v2 = (−1, 1), is a basis for R2.

These examples show that there can be more than one basis for a vector
space. It will be shown, however, that any two bases for a given vector
space must have the same number of elements (Section 11.9).
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Let S = {v1, v2, . . . , vn} be a finite subset of V .

11.8.1 Theorem. The set S is a basis for V if and only if every vector v
in V can be written uniquely in the form v = a1v1 + a2v2 + · · ·+ anvn with
ai ∈ F .

Proof. Assume that S is a basis for V . Let v ∈ V . By the spanning property
of basis, v can be written in at least one way in the form v = a1v1 + a2v2 +
· · · + anvn with ai ∈ F . Suppose also v = b1v1 + b2v2 + · · · + bnvn with
bi ∈ F . Then the two linear combinations are equal, so rearranging we get

(a1 − b1)v1 + (a2 − b2)v2 + · · ·+ (an − bn)vn = 0.

By the linear independence property of basis we get ai − bi = 0 for all i, so
that ai = bi for all i. This demonstrates the uniqueness claim.

Now assume that every vector v in V can be written uniquely in the form
v = a1v1 + a2v2 + · · ·+ anvn with ai ∈ F . It is immediate that S spans V .
Suppose we have a1v1 + a2v2 + · · · + anvn = 0 with ai ∈ F . We also have
0v1 + 0v2 + · · · + 0vn = 0, so these two ways of writing the zero vector 0
must be the same by the uniqueness assumption. Therefore, ai = 0 for all i,
showing that S is linearly independent. We conclude that S is a basis.

11.9 Dimension

Let F be a field and let V be a vector space over F .

11.9.1 Theorem.

(i) Every finite spanning subset of V contains a basis for V .

(ii) Assume V has a spanning set consisting of n vectors. Every linearly
independent subset of V is contained in a basis for V consisting of at
most n vectors.

(iii) Any two bases for V have the same number of elements.

Proof. (i) (Sketch) If S is a finite spanning subset of V , then a subset of S
chosen to be minimal among all subsets of S that span V is a basis.

(ii) Let v1, v2, . . . , vm be linearly independent vectors in V . We prove that
m ≤ n arguing by induction on n. If n = 0, then V = {0} forcing m = 0 ≤ n
since no set of vectors in {0} is linearly independent.
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Assume that n > 0. By assumption, V has a spanning set S = {w1, w2,
. . . , wn} consisting of n vectors. For each 1 ≤ i ≤ m there exist scalars
aij , 1 ≤ j ≤ n, such that vi =

∑
j aijwj . If ai1 = 0 for each i, then the vi

are contained in 〈w2, w3, . . . , wn〉 so that m ≤ n − 1 < n by the induction
hypothesis. Therefore, by renumbering if necessary, we may (and do) assume
that a11 6= 0. Define v′i = vi − ai1a−111 v1 ∈ 〈w2, . . . , wn〉. Then v′2, . . . , v

′
m are

linearly independent. By the induction hypothesis, m−1 ≤ n−1, so m ≤ n
as desired.

Now we prove the claim in the statement of the theorem. By (i) we may
(and do) assume that V has a basis B having n elements. Let S′ be a
linearly independent subset of V . If S ⊆ B is chosen to be maximal among
all subsets of B such that S′ ∪ S is linearly independent, then this union is
a basis, and it consists of at most n vectors by the previous paragraph.

(iii) Use (ii).

The vector space V is finite dimensional of dimension n, written dimV =
n, if it has a basis consisting of n vectors (well-defined by (iii)). If V does
not have a (finite) basis, it is infinite dimensional.

• For a positive integer n, the vector space Rn has dimension n since
the standard basis has n elements.

• For a positive integer n, the vector space consisting of all polynomials
over F of degree less than n has dimension n, since {1, x, x2, . . . , xn−1}
is a basis, as is easily checked.

We gather together some useful consequences of the theorem:

11.9.2 Corollary.

(i) V is finite dimensional if and only if it has a finite spanning set.

(ii) If V is finite dimensional, then a subset of V is a basis for V if and
only if it is a minimal spanning subset of V

(iii) If V is finite dimensional, then a subset of V is a basis for V if and
only if it is a maximal linearly independent subset of V .

(iv) If V is finite dimensional of dimension n, then a subset of V consist-
ing of n vectors is a basis for V if either it spans V or it is linearly
independent.

68



(v) If V is finite dimensional and W is a subspace of V , then W is finite
dimensional, dimW ≤ dimV , and dimV/W = dimV − dimW .

11.10 Linear transformation

Let F be a field and let V and V ′ be vector spaces over F . A linear
transformation from V to V ′ is a function T : V → V ′ satisfying the
following:

(i) T (v + w) = T (v) + T (w) for all v, w ∈ V ,

(ii) T (av) = aT (v) for all a ∈ F , v ∈ V .

An isomorphism from V to V ′ is a bijective linear transformation from
V to V ′. The vector spaces V and V ′are isomorphic, written V ∼= V ′, if
there exists an isomorphism from V to V ′. Two isomorphic vector spaces
are identical as far as their vector properties are concerned.

11.10.1 Theorem. A vector space over F of finite dimension n is iso-
morphic to Fn.

Proof. (Sketch) Let V be a vector space over F of dimension n. There
exists a basis of V having n elements, say, S = {v1, v2, . . . , vn}. The map
T : Fn → V given by

T ((a1, a2, . . . , an)) = a1v1 + a2v2 + · · ·+ anvn

is a linear transformation. It is bijective by the theorem of Section 11.8.

11.11 First Isomorphism Theorem

Let T : V → V ′ be a linear transformation. Part (i) of 11.10 says that T is a
group homomorphism from (V,+) to (V ′,+). From group theory, we know
that the kernel of T is a subgroup of V and the image of T is a subgroup of
V ′. These subgroups are closed under scalar multiplication so that they are
in fact both subspaces.

The kernel of T is sometimes called the null space of T and the image of
T is sometimes called the range of T .
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11.11.1 Theorem (First Isomorphism Theorem).

V/ kerT ∼= imT.

Proof. Define T̄ : V/ kerT → imT by T̄ (v + kerT ) = T (v). Since T is a
group homomorphism, this is a well-defined isomorphism of groups by the
proof of the first isomorphism theorem for groups. Since

T̄ (a(v + kerT )) = T̄ ((av) + kerT ) = T (av) = aT (v) = aT̄ (v + kerT )

for every a ∈ F and every v ∈ V , T̄ is a linear transformation and hence an
isomorphism of vector spaces as well.

Assume that V is finite dimensional. The image of T is a finite-dimensional
since it is spanned by the image of a basis for V (use Section 11.9 Corollary
(i)). Its dimension is the rank of T , written rankT . The kernel of T is also
finite-dimensional (Section 11.9 Corollary (v)). Its dimension is the nullity
of T , written nullity T . In symbols,

• rankT = dim imT ,

• nullity T = dim kerT .

The following result is an immediate consequence of the First Isomorphism
Theorem.

11.11.2 Corollary (Rank plus nullity theorem).

dimV = rankT + nullity T

• Let T : R3 → R3 be “projection onto the (x, y)-plane.” That is,
T is the function given by T (x, y, z) = (x, y, 0). Then T is a linear
transformation. Its image is the (x, y)-plane, which has dimension
two, and its kernel is the z-axis, which has dimension one. We have

dim R3 = 3 = 2 + 1 = dim imT + dim kerT = rankT + nullity T

in agreement with the corollary.

In more detail, the quotient space R3/ kerT is the set of all cosets of
the z-axis, that is, it is the set of all lines in R3 that are parallel to
the z-axis. There is a natural bijection from this set of lines to the
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(x, y)-plane; it is defined by sending a line to its intersection with the
(x, y)-plane. This bijection is compatible with the operations (i.e., it
is a linear transformation), and it is therefore an isomorphism. This
illustrates the First Isomorphism Theorem.

11 – Exercises

11–1 Let V be a vector space over a field F and let S = {v1, v2, . . . , vn} be
a linearly independent subset of V . Prove that every subset of S is linearly
independent.

11–2 Let V be the subspace of R[x] consisting of all polynomials over R
of degree at most two. Prove that the set S = {1 + x, x− 2x2, 1 + 3x2} is a
basis for V .

11–3 Let F be a field, let V be a vector space over F , and let S =
{v1, v2, . . . , vn} be a subset of V .

(a) Prove that S is linearly dependent if and only if one of the vectors vi
is in the span of the other vectors.

(b) Prove or give a counterexample: If S is linearly dependent, then v1 ∈
〈v2, v3, . . . , vn〉.

11–4 Let V be a vector space over a field F and let B = (v1, v2, . . . , vn)
be an ordered basis for V (so {v1, v2, . . . , vn} is a basis for V and the basis
vectors have the indicated fixed ordering).

Let v ∈ V . By 11.8, v = a1v1 + a2v2 + · · · + anvn for uniquely determined
ai ∈ F . The coordinate vector of v relative to B, denoted [v]B, is the
n× 1 matrix defined by

[v]B =


a1
a2
...
an

 .
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Let V ′ be another vector space over F with ordered basis B′ = (v′1, v
′
2,

. . . , v′m) and let T : V → V ′ be a linear transformation. The matrix of T
relative to the bases B and B′ is the m × n matrix A having jth column
[T (vj)]B′ (1 ≤ j ≤ n).

(a) Prove that [T (v)]B′ = A[v]B for each v ∈ V .

(b) Let V be the vector space of polynomials over R of degree at most two.
Then B = (1+x, x−2x2, 1+3x2) is an ordered basis for V (c.f. Exercise
11–2) and so also is B′ = (x2, x, 1). The function T : V → V defined
by T (f(x)) = f ′(x) (= derivative of f(x)) is a linear transformation.
Find the matrix of T relative to B and B′ and verify that the formula
of part (a) is valid.

12 Field extension

12.1 Definition of field extension and degree

Let E be a field and let F be a subring of E that is also a field. We say that
F is a subfield of E and that E is a field extension of F . For brevity, we
will refer to this situation by saying that E ⊇ F is a field extension.

Some examples of field extensions are R ⊇ Q and C ⊇ R.

Essential to our discussion is the simple observation that E can be regarded
as a vector space over F with both addition and scalar multiplication coming
from the operations in E. The dimension of this vector space is written
[E : F ] and is called the degree of the field extension E ⊇ F . A field
extension is finite or infinite according as its degree is finite or infinite.

• Every complex number can be written uniquely in the form a+bi with
a, b ∈ R, so {1, i} is a basis for the vector space C over R. Therefore,
[C : R] = 2.

• We will see that R ⊇ Q is an infinite extension.
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12.2 Degree is multiplicative

Let E ⊇ M ⊇ F be field extensions (sometimes referred to as a tower of
fields).

12.2.1 Theorem. The degree [E : F ] is finite if and only if both of the
degrees [E : M ] and [M : F ] are finite, and in this case

[E : F ] = [E : M ][M : F ].

Proof. Assume that the degree [E : F ] is finite. Then E, viewed as a vector
space over F , has a (finite) basis B. Since E is the span of B over F , it is
the span of B over M as well (using that M ⊇ F ), so [E : M ] is finite by
Section 11.9. Also, M is a subspace of the finite dimensional vector space
E over F , so its dimension [M : F ] is finite as well (part (v) of the corollary
in Section 11.9).

Now assume that [E : M ] and [M : F ] are both finite. Then E has a basis
B = {β1, . . . , βn} over M and M has a basis A = {α1, . . . , αm} over F . We
claim that the set AB = {αiβj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for E over
F .

Let c ∈ E. Then c =
∑

j bjβj for some bj ∈ M . In turn, for each j,
bj =

∑
i aijαi for some aij ∈ F . Therefore,

c =
∑
j

bjβj =
∑
j

(∑
i

aijαi

)
βj =

∑
i,j

aijαiβj ,

so AB spans E over F .

Now suppose that
∑

i,j aijαiβj = 0 with aij ∈ F . Then rearranging the sum,
we get

∑
j (
∑

i aijαi)βj = 0, so linear independence of B gives
∑

i aijαi = 0
for all j. In turn, linear independence of A gives aij = 0 for all i and j.
Therefore, AB is linearly independent.

We conclude that AB is a basis for E over F and [E : F ] = |AB| = |B||A| =
[E : M ][M : F ].

12.3 Subfield generated by a set

Let E be a field. If S a subset of E, then the intersection of all subfields
of E containing S is a subfield of E called the subfield of E generated
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by S. It is the smallest subfield of E that contains S in the sense that it is
contained in every subfield of E that contains S.

Let E ⊇ F be a field extension and let S be a subset of E. We write F (S)
for the subfield of E generated by F ∪ S. If S = {α1, α2, . . . , αn}, then we
write F (α1, α2, . . . , αn) for F (S) and refer to this as the field obtained from
F by adjoining α1, α2, . . . , αn.

The extension E ⊇ F is simple if E = F (α) for some α ∈ E.

• The extension C ⊇ R is simple since C = R(i).

12.4 Algebraic element

Let E ⊇ F be a field extension and let α ∈ E. The element α is algebraic
over F if α is a zero of a nonzero polynomial over F . So α is algebraic over
F if there exists f(x) ∈ F [x] with f(x) 6= 0 such that f(α) = 0. If α is not
algebraic, it is transcendental.

• The real number
√

2 is algebraic over Q, since f(
√

2) = 0, where
f(x) = x2 − 2 ∈ Q[x].

• The complex number i is algebraic over R, since f(i) = 0, where
f(x) = x2 + 1 ∈ R[x]. Since f(x) = x2 + 1 is also a polynomial over
Q, the number i is algebraic over Q as well.

• If α is in F , then α is algebraic over F , since f(α) = 0, where f(x) =
x− α ∈ F [x].

• It has been shown that the real numbers π and e are both transcen-
dental over Q.

Assume that α is also an element of another field extension E′ of F . In
posing the question of whether a is algebraic over F , it does not matter
whether one views α as an element of E or as an element of E′. Indeed, if
f(x) is a polynomial over F , then f(α) is an element of F (α), which is a
subfield of both E and E′, so the answer to the question of whether f(α) is
zero does not depend on the choice of E or E′ as the field extension.

A polynomial f(x) = a0 + a1x+ · · ·+ anx
n over F with an = 1 is a monic

polynomial.
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12.4.1 Theorem. Assume that α is algebraic over F .

(i) There exists a unique monic polynomial pα(x) over F of minimal de-
gree such that pα(α) = 0.

(ii) For every f(x) ∈ F [x], we have f(α) = 0 if and only if pα(x) divides
f(x).

(iii) pα(x) is irreducible.

(iv) F (α) ∼= F [x]/(pα(x)) and F (α) = {f(α) | f(x) ∈ F [x]}.

(v) Put n = deg pα(x). The set {1, α, α2, . . . , αn−1} is a basis for the
vector space F (α) over F .

(vi) [F (α) : F ] = deg pα(x).

Proof. (i), (ii) Since α is algebraic over F , it is a zero of a nonzero polyno-
mial over F . From among all such polynomials, choose one with least degree
and call it pα(x). Since α is a zero of any scalar multiple of pα(x), we may
(and do) assume that pα(x) is monic.

Let f(x) be a polynomial over F . Assume that f(α) = 0. By the division
algorithm, there exist q(x), r(x) ∈ F [x] with deg r(x) < deg pα(x) such that
f(x) = q(x)pα(x) + r(x). Since r(α) = f(α)− q(α)pα(α) = 0, the choice of
pα(x) forces r(x) = 0, whence f(x) = q(x)pα(x). Therefore, pα(x) divides
f(x). On the other hand, if pα(x) divides f(x), then f(x) = g(x)pα(x) for
some g(x) ∈ F [x], so f(α) = g(α)pα(α) = 0. This proves (ii).

Let f(x) be a polynomial over F with f(α) = 0. By (ii), f(x) = g(x)pα(x)
for some g(x) ∈ F [x]. If deg f(x) = deg pα(x), then g(x) is a constant
polynomial, and if, additionally, f(x) is monic, then g(x) = 1, so that
f(x) = pα(x). This establishes the uniqueness statement in (i) and finishes
the proof of that part.

(iii) Assume, to the contrary, that pα(x) is not irreducible. First, pα(x) is
nonzero (since it is monic) and a nonunit (since having α as a zero means it
is nonconstant). Therefore, there is a proper factorization pα(x) = f(x)g(x).
By Section 9.5, we have deg f(x),deg g(x) < deg pα(x). Now f(α)g(α) =
pα(α) = 0 and, since F is an integral domain, we get f(α) = 0 or g(α) = 0.
Either case contradicts the minimality of the degree of pα(x). Therefore,
pα(x) is irreducible.
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(iv) The kernel I of the evaluation homomorphism ϕα : F [x] → E (which
sends f(x) to f(α)) is the set of all f(x) ∈ F [x] for which f(α) = 0. In view
of part (ii), we have I = (pα(x)), the principal ideal generated by pα(x).
Since pα(x) is irreducible (by (iii)), the ideal I is maximal (8.3 and 9.6), so
the quotient ring F [x]/I is a field (5.5). Therefore, the image

M = {f(α) | f(x) ∈ F [x]}

of ϕα, which is isomorphic to F [x]/I by the first isomorphism theorem, is a
subfield of E.

We claim that M = F (α). Any subfield of E that contains F and α must
contain M by the closure properties, so M ⊆ F (α). On the other hand, M
is a subfield of E that contains each a ∈ F (let f(x) = a) and also α (let
f(x) = x), so M ⊇ F (α). This establishes the claim and finishes the proof
of (iv).

(v) Put S = {1, α, α2, . . . , αn−1}, where n = deg pα(x). Since α is an element
of F (α), it follows from closure properties that S ⊆ F (α). Let β ∈ F (α).
By part (iv), we have β = f(α) for some f(x) ∈ F [x]. By the division
algorithm, there exist q(x), r(x) ∈ F [x] with deg r(x) < deg pα(x) such that
f(x) = q(x)pα(x) + r(x), so

β = f(α) = q(α)pα(α) + r(α) = r(α).

Now deg r(x) < deg pα(x) = n, so r(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

for some ai ∈ F . Therefore,

β = r(α) = a0 · 1 + a1α+ a2α
2 + · · ·+ an−1α

n−1 ∈ 〈S〉.

This shows that S spans F (α). Suppose that a0 · 1 + a1α + a2α
2 + · · · +

an−1α
n−1 = 0, with ai ∈ F . Then g(x) =

∑
i aix

i is a polynomial over F of
degree less than deg pα(x) such that g(α) = 0. By part (i), g(x) = 0, that
is, ai = 0 for all i. Thus S is linearly independent. We conclude that S is a
basis for F (α) as claimed.

(vi) This follows immediately from part (v)

The polynomial pα(x) is the minimal polynomial of α over F . Generally,
the base field F of the extension E ⊇ F will be fixed in our discussion, so the
notation pα(x) will be unambiguous. However, when we need to reference
the base field in the notation we will write pα,F (x).
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• As was observed earlier, the set {1, i} is a basis for the vector space
C = R(i) over R. This is in agreement with the theorem since pi(x) =
x2 + 1 is the minimal polynomial of i over R.

12.5 A finite extension is algebraic

Let E ⊇ F be a field extension. If every element of E is algebraic over F
then E ⊇ F is an algebraic extension.

12.5.1 Theorem. If E ⊇ F is finite, then it is algebraic.

Proof. Assume that E ⊇ F is finite, so that [E : F ] = n for some positive
integer n. Let α be an element of E. Since E has dimension n over F , the
n + 1 elements 1, α, α2, . . . , αn must be linearly dependent. So there exist
ai ∈ F , not all zero, such that

a0 · 1 + a1α+ a2α
2 + · · ·+ anα

n = 0.

Hence, f(x) =
∑

i aix
i is a nonzero polynomial over F having α as a zero.

This shows that α is algebraic over F . We conclude that E ⊇ F is an
algebraic extension.

12.6 Straightedge and compass constructions

In this section, we use the theory of field extensions to show that there cannot
exist an algorithm for trisecting an arbitrary angle using only a straightedge
and compass.

We need a careful description of what is meant by a straightedge and com-
pass construction. Begin by choosing two arbitrary points on a piece of
paper and call these two points O and I. Take these as the start of a
collection of constructible points. New constructible points arise as inter-
sections of lines and circles drawn with the straightedge and compass using
points that have already been constructed. We call such lines and circles
constructible. More precisely, a line is constructible if and only if it passes
through two constructible points (intuitively, the two points are used to line
up the straightedge) and a circle is constructible if and only if its center is a
constructible point and it passes through a constructible point (intuitively,
the point of the compass is placed on the first point and the compass is
adjusted so that the drawing tip is at the second point).
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We leave it to the reader to verify the following elementary fact: Given a
constructible line L and a constructible point P , the line through P that is
perpendicular to L is constructible, and so is the line through P parallel to
L.

It is convenient to introduce a coordinate system. Turn the paper, if neces-
sary, so that I is directly to the right of O. The line through these points is
constructible; it forms the x-axis with O marking the origin and I marking
the point (1, 0). The line that passes through O and is perpendicular to the
x-axis is constructible; it forms the y-axis. Finally, the circle with center O
passing through I intersects the y-axis in the constructible point J = (0, 1).
This completes the setup of the coordinate system.

A real number α is constructible if it is a coordinate of a constructible
point.

If a circle is constructible, then its radius is constructible: Given a con-
structible circle with center C, let P be the right point of intersection of the
circle and a horizontal line through C. The line through P that is parallel
to the line through O and C intersects the x-axis at the point (r, 0), where
r is the radius of the circle. (If C lies on the x-axis, then this construction
fails, but the point (0, r) can be constructed instead.)

12.6.1 Theorem. If α is constructible, then [Q(α) : Q] = 2n for some
nonnegative integer n.

Proof. Suppose that a certain sequence of constructions, as described above,
have been carried out. Let F be a subfield of R that contains the coordinates
of all currently constructed points and let (α, β) be a newly constructed
point. We claim that the degree [F (α) : F ] is either 1 or 2 (and likewise for
[F (β) : F ]).

First assume that (α, β) is obtained as a point of intersection of a con-
structible line L and a constructible circle C. This line and this circle have
equations

L : y − t1 =
t2 − t1
s2 − s1

(x− s1), C : (x− c1)2 + (y − c2)2 = r2,

with si, ti, ci, r ∈ F (unless the line is vertical, which case we leave to the
reader to handle). Now (x, y) = (α, β) is a solution to both of theses equa-
tions, so, after substituting in and combining to eliminate β, one finds that α
satisfies an equation of the form a0+a1α+a2α

2 = 0 with ai ∈ F . Therefore,
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α is a zero of f(x) = a0 + a1x+ a2x
2 ∈ F [x]. By Section 12.4, the minimal

polynomial of α over F has degree 1 or 2, and so the degree [F (α) : F ] is
1 or 2 as well. An analogous argument shows that the same is true of the
degree [F (β) : F ].

In the two other cases, namely, (α, β) obtained as a point of intersection of
two constructible lines or two constructible circles, similar reasoning leads
to the same conclusion. Therefore, the claim is established.

We are now ready to prove the theorem. Let α be a constructible number.
There is a finite sequence (α1, α2), (α3, α4), . . . , (αr−1, αr) of constructible
points such that the first point is constructed from O and I, each point
after that is constructed from the preceding points, and either αr−1 = α or
αr = α. Using the first part of the proof, we see that the degree of each field
over the preceding field in the sequence

Q ⊆ Q(α1) ⊆ Q(α1)(α2) ⊆ · · · ⊆ Q(α1)(α2) · · · (αr) =: E

is either 1 or 2. Therefore [E : Q] is a power of 2 by Section 12.2. Since
α ∈ E, we have E ⊇ Q(α) ⊇ Q, so, again by Section 12.2, [Q(α) : Q] = 2n

for some nonnegative integer n.

12.6.2 Corollary. There is no algorithm for trisecting an arbitrary angle
using straightedge and compass.

Proof. We argue by contradiction. Suppose that there is such an algorithm.
Construct the equilateral triangle with base OI, use the purported algorithm
to trisect the 60◦ angle at O, and hence construct the point on the unit circle
with x-coordinate cos 20◦. Drop a perpendicular from this point to the x-
axis to construct the point (cos 20◦, 0) and then use the circle through O
having this point as center to construct the point (2 cos 20◦, 0). Conclude
that the number α = 2 cos 20◦ is constructible.

From the trigonometric identity cos 3θ = 4 cos3 θ − 3 cos θ we obtain

1/2 = cos 60◦ = 4 cos3 20◦ − 3 cos 20◦,

so that
1 = 8 cos3 20◦ − 6 cos 20◦ = α3 − 3α.

Therefore, α is a zero of f(x) = x3− 3x− 1 ∈ Z[x]. If this polynomial is not
irreducible over Q, then it must have a linear factor and hence a zero in Q,
which is not the case since the rational root theorem (10.2) limits such zeros
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to ±1, and neither of these is a zero. Therefore, f(x) is irreducible over
Q and it follows that it is the minimal polynomial pα(x) of α over Q. By
Section 12.4, [Q(α) : Q] = 3, which is in conflict with the previous theorem.

We conclude that there is no algorithm for trisecting an angle using straight-
edge and compass.

12 – Exercises

12–1 Let E ⊇ F be a field extension, let α ∈ E, and assume that the
degree [F (α) : F ] is odd. Prove that F (α2) = F (α).

12–2 Prove that the set A = {α ∈ C | α is algebraic over Q} is a subfield
of C.

Hint: For α, β ∈ A, first prove that the degree [Q(α, β) : Q] is finite by
using Section 12.2 with an appropriate intermediate field. Then use 12.5.

13 Galois correspondence

13.1 Definition: Galois group of extension

Let E ⊇ F be fields. The set Aut(E) of all automorphisms of E is a group
under function composition. If σ is an element of Aut(E) that fixes every ele-
ment of F (meaning σ(a) = a for all a ∈ F ), then σ is an F -automorphism
of E. An F -automorphism of E is bijective and it is simultaneously a ring
homomorphism from E to itself and a linear transformation of the vector
space E over F to itself.

The Galois group of E over F , denoted AutF (E), is the subgroup of
Aut(E) consisting of all F -automorphisms of E. (We will sometimes refer
to this group as the Galois group of the extension E ⊇ F .)

13.2 Examples

Here are some examples of Galois groups of extensions E ⊇ F .
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• (E=F) In this case, the Galois group of the extension is the trivial
group.

• (C ⊇ R) Let σ ∈ AutR(C). We have σ(i)2 = σ(i2) = σ(−1) = −1, so
σ(i) = ±i. Therefore, for any a+ bi ∈ C,

σ(a+ bi) = σ(a) + σ(b)σ(i) = a± bi,

implying that σ is either the identity map or complex conjugation.
Conversely, the identity map and complex conjugation are both R-
automorphisms of C, so the Galois group of C over R consists precisely
of these two elements. We conclude that AutR(C) ∼= Z2.

• (Q(
√

2) ⊇ Q) By Section 12.4 the vector space Q(
√

2) over Q has basis
{1,
√

2}. Reasoning as in the previous example, we find that σ is in
the Galois group of Q(

√
2) over Q if and only if σ(a+b

√
2) = a±b

√
2,

so this Galois group is also isomorphic to Z2.

• (Q( 3
√

2) ⊇ Q) Put α = 3
√

2 and let σ ∈ AutQ(Q(α)). We have σ(α)3 =
σ(α3) = σ(2) = 2, so x = σ(α) is a solution to the equation x3 = 2.
This solution is real since it lies in Q(α) ⊆ R. But α is the only real
solution to this equation, so σ(α) = α. Since every element of Q(α) is
a linear combination of powers of α with rational coefficients (12.4), it
follows that σ is the identity map. We conclude that the Galois group
of Q( 3

√
2) over Q is the trivial group.

13.3 Priming maps

Let E ⊇ F be a field extension. A field M with E ⊇ M ⊇ F is an
intermediate field of the extension E ⊇ F . Let M be the set of all
such intermediate fields. Put G = AutF (E) and let H be the set of all
subgroups of G.

Define a map M → H by M 7→ M ′, where M ′ = AutM (E), the Galois
group of E over M . Also, define a map in the reverse direction H →M by
H 7→ H ′, where H ′ = {α ∈ E |σ(α) = α for all σ ∈ H}, the fixed field of
the subgroup H. These are referred to as the priming maps; they can be
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visualized like this:

E {ε}
∪ ∩
M → M ′

∪ ∩
F G

E {ε}
∪ ∩
H ′ ← H
∪ ∩
F G

The priming maps are inclusion reversing, that is, if L and M are intermedi-
ate fields with L ⊆M , then L′ ⊇M ′, and similarly for the reverse map. The
following result that relates intermediate field degrees to subgroup indexes
is crucial for the development of the theory.

13.3.1 Theorem. Assume that the extension E ⊇ F is finite.

(i) If M,L ∈M with M ⊇ L, then |L′ : M ′| ≤ [M : L].

(ii) If H,J ∈ H with H ⊆ J , then [H ′ : J ′] ≤ |J : H|.

Proof. (i) Let M,L ∈ M with M ⊇ L. Assume that M = L(α) for some
α ∈M . We will begin by proving the claim in this special case.

First, [L(α) : L] is finite by 12.2, so α is algebraic over L by 12.5.

Let σ1M
′, σ2M

′, . . . , σrM
′ be distinct left cosets of M ′ in L′. Let 1 ≤ i, j ≤

r and assume that σi(α) = σj(α). Then σ−1j σi fixes α and, since this
automorphism is in L′, it fixes all of L(α) = M (since every element of
L(α) is a linear combination of powers of α with coefficients in L by 12.4).
Therefore, σ−1j σi ∈M ′, implying that σiM

′ = σjM
′, and so i = j. It follows

that the elements σ1(α), σ2(α), . . . , σr(α) are distinct.

Let pα(x) be the minimal polynomial of α over L. By Exercise 13–1, σi(α)
is a zero of pα(x) for each i, so r is at most the number of zeros of pα(x) in
M , which is at most deg pα(x) = [L(α) : L] = [M : L] (using 9.4 and 12.4).
In summary, r ≤ [M : L].

We have shown that there can be at most [M : L] distinct left cosets of M ′

in L′, which implies |L′ : M ′| ≤ [M : L]. This establishes the special case.

We now prove the claim by induction on n = [M : L]. If n = 1, then M = L
and the claim follows. Assume that n > 1. Then there exists α ∈ M with
α /∈ L. If M = L(α), then the first part of the proof applies, so suppose
that M 6= L(α). Then [M : L(α)] and [L(α) : L] are both strictly less
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than n (since neither is 1 and their product is n by 12.2), so the induction
hypothesis gives

|L(α)′ : M ′| ≤ [M : L(α)] and |L′ : L(α)′| ≤ [L(α) : L].

Therefore,

|L′ : M ′| = |L′ : L(α)′||L(α)′ : M ′| ≤ [L(α) : L][M : L(α)] = [M : L],

where we have used multiplicativity of subgroup index (from group theory).

(ii) Let H,J ∈ H with H ⊆ J . By part (i),

|AutF (E)| = |AutF (E) : {ε}| = |F ′ : E′| ≤ |E : F | <∞,

so the Galois group of the extension is finite. In particular, |J : H| is finite.

Assume that the claim is false, that is, [H ′ : J ′] > |J : H| =: n. Then
there exist α1, α2, . . . , αn+1 in H ′ that are linearly independent over J ′. Let
σ1H,σ2H, . . . σnH be the distinct left cosets of H in J with σ1 = ε (the
identity map on E). The system

σ1(α1)c1 + σ1(α2)c2 + · · · + σ1(αn+1)cn+1 = 0
σ2(α1)c1 + σ2(α2)c2 + · · · + σ2(αn+1)cn+1 = 0

...
...

...
...

σn(α1)c1 + σn(α2)c2 + · · · + σn(αn+1)cn+1 = 0

has n equations and n + 1 unknowns ci ∈ E, so there exists a nontrivial
solution. Among all such solutions, let c1, c2, . . . , cn+1 be one with as many
zeros as possible. We may (and do) make the following assumptions:

• there exists 1 ≤ r ≤ n+ 1 such that for each i

ci 6= 0 if i ≤ r and ci = 0 if i > r,

• c1 = 1,

• c2 /∈ J ′.

The first can be arranged for by relabeling the αi, if necessary. Replacing
each ci by ci/c1 allows for the second. In view of our assumption that σ1 = ε,
the first equation of the system is

∑
i ciαi = 0, so not all of the ci lie in J ′
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(else linear independence of the αi over J ′ is contradicted). Relabeling the
αi yet again, if necessary, allows for the third assumption.

There exists τ ∈ J such that τ(c2) 6= c2. For each i, there exists a unique i′

such that τσiH = σi′H. The map from N := {1, 2, . . . , n} to itself given by
i 7→ i′ is bijective. Indeed, for i, j ∈ N

i′ = j′ ⇒ σi′H = σj′H ⇒ τσiH = τσjH

⇒ σiH = σjH ⇒ i = j,

so that the map is injective and, since N is finite, the map is surjective as
well.

Fix i ∈ N . We have τσi = σi′µ for some µ ∈ H, so τσi(αj) = σi′µ(αj) =
σi′(αj) for each j, where the last equality is due to the fact that αj ∈ H ′.
This establishes that τσi(αj) = σi′(αj) for each i and each j.

Applying τ to the original system of equations yields

0 =
∑
j

τσi(αj)τ(cj) =
∑
j

σi′(αj)τ(cj)

(1 ≤ i ≤ n), which shows that τ(c1), τ(c2), . . . , τ(cn+1) is a solution to the
system (since this is the same system with equations permuted). Subtracting
from the earlier solution we obtain a solution

c1 − τ(c1), c2 − τ(c2), . . . , cn+1 − τ(cn+1).

By our choices, c1 = 1, so c1 − τ(c1) = 0, and τ(c2) 6= c2, so c2 − τ(c2) 6=
0. It follows that this is a nontrivial solution to the system that has a
greater number of zeros than the solution c1, c2, . . . , cn+1, contrary to our
assumption. The proof is complete.

13.4 Closed subfields and subgroups

Let E ⊇ F be a field extension. It makes sense to compose the two priming
maps of Section 13.3. In general, one has M ′′ ⊇M and H ′′ ⊇ H for M ∈M
and H ∈ H (M ′′ is the set of field elements fixed by every automorphism
fixing M ; H ′′ is the set of automorphisms that fix every field element that
is fixed by every automorphism in H).

An intermediate field M ∈ M is closed if M ′′ = M . Similarly, a subgroup
H ∈ H is closed if H ′′ = H.
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If all intermediate fields and subgroups were closed, then it would follow that
the priming maps would be inverses of each other and would therefore de-
fine a one-to-one correspondence between intermediate fields and subgroups.
Unfortunately, this is not the case in general as the following example shows.

• If E = Q( 3
√

2) and F = Q, then F is not closed. Indeed, by Section
13.2, F ′ = AutF (E) is trivial, so F ′′ = E 6= F .

We can, nevertheless, impose conditions on the extension that will guarantee
that all intermediate fields and all subgroups are closed. The extension
E ⊇ F is a normal extension if F is closed. By Exercise 13–3, the
extension E ⊇ F is normal if and only if each element of E that is not in F
is moved by some element of the Galois group of the extension.

13.4.1 Theorem. Assume that the extension E ⊇ F is finite and normal.

(i) Every intermediate field M ∈M and every subgroup H ∈ H is closed.

(ii) If M,L ∈M with M ⊇ L, then |L′ : M ′| = [M : L].

(iii) If H,J ∈ H with H ⊆ J , then [H ′ : J ′] = |J : H|.

Proof. Let M ∈ M. Using Sections 12.2 and 13.3 we have [M ′′ : F ] < ∞
and

[M ′′ : M ][M : F ] = [M ′′ : F ] = [M ′′ : F ′′] ≤ |F ′ : M ′| ≤ [M : F ],

where we have used that F ′′ = F since the extension E ⊇ F is normal. This
says that [M ′′ : M ] = 1, which forces M ′′ = M . We conclude that every
intermediate field of the extension is closed.

Let M,L ∈M with M ⊇ L. Using what we have just proved, we have

[M : L] = [M ′′ : L′′] ≤ |L′ : M ′| ≤ [M : L],

which forces |L′ : M ′| = [M : L]. This establishes the claims made about
intermediate fields. The claims made about subgroups are proved similarly.
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13.5 Normality

Let E ⊇ F be a finite, normal extension and put G = AutF (E). Let M ∈M
be an intermediate field of the extension.

13.5.1 Lemma. The extension M ⊇ F is normal if and only if σ(M) ⊆
M for all σ ∈ G.

Proof. Assume that M ⊇ F is normal. Let α ∈ M . Since the extension
E ⊇ F is finite, the element α is algebraic over F . We claim that the
minimal polynomial pα(x) of α over F factors as a product of linear factors
over M .

For each τ ∈ H = AutF (M), τ(α) is a zero of pα(x) (see Exercise 13–1).
Therefore, the set H(α) = {τ(α) | τ ∈ H} has at most deg pα(x) elements.
Let α1, α2, . . . , αm ∈ M be the distinct elements of this set. Then m ≤
deg pα(x).

Put f(x) = (x − α1)(x − α2) · · · (x − αm). Let µ ∈ H. Since µ(H(α)) =
(µH)(α) = H(α), we see that µ(αi) = αi′ , where i 7→ i′ is some permutation
of the set {1, 2, . . . ,m}. With µ̄ : M [x]→M [x] denoting the homomorphism
induced by µ (see 9.8), we have

µf(x) = µ̄(f(x)) = µ̄(
∏
i

(x− αi)) =
∏
i

µ̄(x− αi)

=
∏
i

(x− µ(αi)) =
∏
i

(x− αi′) =
∏
i

(x− αi) = f(x),

so that µ fixes the coefficients of f(x). Since µ was arbitrary, we conclude
that the coefficients of f(x) are all contained in the fixed field of H, which is
F ′′, where the priming operations are relative to the extension M ⊇ F . By
our assumption that this extension is normal, we have F ′′ = F . Therefore,
f(x) is a polynomial over F . Now αi = α for some i (since α = ε(α) ∈ H(α)),
so α is a zero of f(x). By Section 12.4, pα(x) divides f(x). However,
deg f(x) = m ≤ deg pα(x) and f(x) is monic, so pα(x) = f(x) =

∏
i(x−αi)

as claimed.

Let σ ∈ G. By Exercise 13–1, σ(α) is a zero of pα(x). But we have just seen
that pα(x) = (x− α1)(x− α2) · · · (x− αn) with αi ∈ M , so the αi must be
the only zeros of pα(x) in E. Hence, σ(α) = αi ∈M for some i. This shows
that σ(M) ⊆M for each σ ∈ G.
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Now assume that σ(M) ⊆ M for each σ ∈ G. We prove that the exten-
sion M ⊇ F is normal by using the characterization of normality stated in
Exercise 13–3. Let α be an element of M that is not in F . There exists
σ ∈ G such that σ(α) 6= α (by Exercise 13–3 and our assumption that the
extension E ⊇ F is normal). By our assumption, σ(M) ⊆M . Since σ is an
isomorphism of the vector space E over F onto itself, it follows that σ(M)
is a subspace of M isomorphic to M . Since M is finite dimensional over F ,
we conclude that σ(M) = M , that is, σ restricts to an element of AutF (M).
By Exercise 13–3, the extension M ⊇ F is normal.

13.5.2 Theorem.

(i) If H is a normal subgroup of G, then H ′ ⊇ F is normal.

(ii) If M ⊇ F is normal, then M ′ is a normal subgroup of G.

Proof. (i) Let H be a normal subgroup of G. By the lemma, it suffices to
show that σ(H ′) ⊆ H ′ for each σ ∈ G. Let σ ∈ G and let α ∈ H ′. For
each µ ∈ H, we have σ−1µσ ∈ H by normality of H, so that σ−1µσ(α) = α,
whence µ(σ(α)) = σ(α). Thus, σ(α) ∈ H ′ and the claim follows.

(ii) Assume that M ⊇ F is normal. Let µ ∈M ′ and σ ∈ G. For α ∈M , we
have

σ−1µσ(α) = σ−1(µ(σ(α))) = σ−1(σ(α)) = α,

where we have used the lemma to see that σ(α) is in M and is therefore fixed
by µ. Therefore, σ−1µσ ∈M ′. This shows that M ′ is a normal subgroup of
G as desired.

13.6 Fundamental theorem of Galois theory

The following theorem is, for the most part, a summary of results stated
and proved in earlier sections. The language here is somewhat informal; the
reader desiring more precise statements can refer to the sections referenced
in the proof.

Let E ⊇ F be a finite, normal field extension and let G = AutF (E) be the
Galois group of the extension.

13.6.1 Theorem (Fundamental theorem of Galois theory).
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(i) The priming maps define a one-to-one correspondence between the in-
termediate fields of the extension and the subgroups of G. This cor-
respondence is inclusion reversing, and the degree of an intermediate
extension equals the index of the corresponding subgroups. In particu-
lar, |G| = [E : F ].

(ii) If M is an intermediate field, then the extension M ⊇ F is normal if
and only if M ′ is a normal subgroup of G, and, in this case, G/M ′ ∼=
AutF (M).

Proof. (i) That the priming maps define a one-to-one correspondence follows
from the fact shown in 13.4 that all intermediate fields and all subgroups are
closed since this implies that the priming maps are inverses of each other.
The inclusion reversing property is immediate. The statement about degrees
is established in 13.4. We have [E : F ] = |F ′ : E′| = |G : {ε}| = |G|.

(ii) The fact that normal intermediate extensions correspond to normal sub-
groups is verified in 13.5.

All that remains is to check the stated isomorphism. Let M be an interme-
diate field and assume that M ⊇ F is normal. Let ϕ : G → AutF (M) be
defined by ϕ(σ) = σ|M (restriction to M). In this definition, σ ∈ G maps M
into M by the lemma of Section 13.5, and the argument in the proof of that
lemma shows that in fact σ(M) = M so that σ|M ∈ AutF (M). Therefore,
ϕ is well defined. By the definition of M ′, we have M ′ = kerϕ. The first
isomorphism theorem gives

G/M ′ = G/ kerϕ ∼= imϕ.

The proof is completed by showing that imϕ = AutF (M). Certainly, imϕ is
a subgroup of AutF (M). Using the isomorphism above and other parts of the
theorem, we have | imϕ| = |G : M ′| = |F ′ : M ′| = [M : F ] = |AutF (M)|,
where the last equality is from part (i) applied to the extension M ⊇ F .
Therefore, imϕ = AutF (M) and the proof is complete.

13.7 Example

Here, we compute the Galois group G of the extension Q(α, β) ⊇ Q, where
α =
√

2 and β =
√

3.

We have a tower Q(α, β) ⊇ Q(α) ⊇ Q. The minimal polynomial of α over
Q is x2 − 2, so [Q(α) : Q] = 2. The minimal polynomial of β over Q(α)
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is x2 − 3. (Reason: Assume otherwise. Since β is a zero of x2 − 3, the
minimal polynomial must divide this polynomial and must therefore be the
linear polynomial x − β, implying β ∈ Q(α). Hence, β = a + bα for some
a, b ∈ Q. After ruling out the possibilities a = 0 or b = 0 we can square both
sides of this equation and solve for α to get

√
2 = α ∈ Q, a contradiction.)

Therefore, [Q(α, β) : Q(α)] = 2.

By the theorem in Section 12.2 and its proof, [Q(α, β) : Q] = 4 and the set
{1, α, β, αβ} is a basis for Q(α, β) over Q. Using this basis, it is routine to
show that there are elements σ and τ of the Galois group G satisfying

σ : α 7→ −α τ : α 7→ α
β 7→ β β 7→ −β.

Let γ ∈ Q(α, β). We have

γ = a11 + a2α+ a3β + a4αβ,

for some ai ∈ Q. If γ /∈ Q, then at least one of the coefficients a2, a3, or a4
is nonzero, so that γ is not fixed either by σ or by τ . By Exercise 13–3, the
extension Q(α, β) ⊇ Q is normal. Since the extension is finite as well the
fundamental theorem of Galois theory (Section 13.6) applies.

We have |G| = [Q(α, β) : Q] = 4. The automorphisms σ and τ each have
order 2 and they are distinct. Since |G| = 4 it follows that σ and τ generate
G and G is isomorphic to Z2 ⊕ Z2 with an isomorphism sending σ to (1, 0)
and τ to (0, 1).

The Galois correspondence is represented here with primed objects occupy-
ing corresponding positions in the lattices:

Q(α, β)

Q(α) Q(αβ) Q(β)

Q

{ε}

〈τ〉 〈τσ〉 〈σ〉

G
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13 – Exercises

13–1 Let E ⊇ F be a field extension, let f(x) be a polynomial over F , let
α ∈ E be a zero of f(x), and let σ ∈ AutF (E). Prove that σ(α) is a zero of
f(x).

13–2 Prove that the Galois group of the extension R ⊇ Q is the trivial
group.

Hint: Prove, in this order, that an element of the Galois group (a) sends a
square to a square, (b) sends a positive number to a positive number, and
(c) preserves order. Then argue by contradiction using the fact that between
any two real numbers there exists a rational number.

13–3 Let E ⊇ F be a field extension and let G = AutF (E) be the Galois
group of the extension. Prove that the extension is normal if and only if, for
each element α of E that is not in F , there exists σ ∈ G such that σ(α) 6= α.

14 Galois group of a polynomial

14.1 Fundamental theorem of algebra

From this point on, we will restrict our discussion to fields contained in the
field C of complex numbers. Galois theory has been developed so far as
to include more general fields, but we have chosen this restriction for the
relative simplicity and ease of exposition that it offers. These advantages
are due to the properties of the complex numbers stated in this section and
the next.

The name given to the theorem below is a bit of a misnomer since there are
no known proofs that involve only algebra. Nor does it seem likely that such
a proof could exist. The complex numbers are defined in terms of the real
numbers, which are defined using Cauchy sequences of rational numbers, so
the notion of a limit is required. Therefore, at some point in every proof of
the theorem (and there are many), analysis ultimately enters in.

The short proof given here is for the reader who has studied complex anal-

90



ysis.

14.1.1 Theorem (Fundamental theorem of algebra). Every non-
constant polynomial over the field C of complex numbers has a zero in C.

Proof. Let f(x) be a polynomial over C. Assume that f(x) has no zero
in C. Then the complex-valued function g(x) = 1/f(x) is defined. We
have lim|x|→∞ |g(x)| = 0, so g(x) is a bounded entire function. According
to Liouville’s theorem, g(x) is constant, say, g(x) = c ∈ C. Therefore,
f(x) = 1/c, a constant function.

14.2 Irreducible polynomial has no multiple zeros in C

Let
f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n

be a polynomial of degree n over the field C of complex numbers.

14.2.1 Theorem.

(i) The polynomial f(x) factors as

f(x) = an(x− α1)(x− α2) · · · (x− αn)

for some αi ∈ C.

(ii) Let F be a subfield of C and assume that f(x) ∈ F [x]. If f(x) is
irreducible over F , then f(x) has deg f(x) distinct zeros in C.

Proof. (i) The proof is by induction on n. There is nothing to prove if n = 0,
so suppose that n > 0. By the fundamental theorem of algebra (14.1),
f(x) has a zero αn in C. According to Section 9.4, f(x) = g(x)(x − αn)
for some polynomial g(x) over C. By the induction hypothesis, g(x) =
an(x−α1)(x−α2) · · · (x−αn−1) for some α1, α2, . . . , αn−1 ∈ C. Therefore,
f(x) has the indicated factorization.

(ii) Assume that f(x) =
∑

i aix
i is irreducible over F . In view of part (i)

it is enough to show that f(x) cannot be expressed in the form f(x) =
(x − α)2g(x) with α ∈ C and g(x) a polynomial over C. Suppose to the
contrary that f(x) has such an expression. In particular, α is a zero of f(x),
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so that deg pα(x) = deg f(x) (where pα(x) is the minimal polynomial of α
over F ). The product rule for differentiation gives

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x),

which shows that α is a zero of f ′(x). Now f ′(x) =
∑

i iaix
i−1, so f ′(x) is

a polynomial over F . Moreover, the degree of f ′(x) is one less than that of
f(x), and f ′(x) is nonzero (since f(x) is irreducible and hence nonconstant),
so this contradicts the fact that the minimal polynomial pα(x) is a nonzero
polynomial over F of minimal degree having α as a zero. This contradiction
completes the proof.

14.3 Extending field isomorphisms

Let F and F0 be subfields of the field of complex numbers and let σ : F → F0

be an isomorphism. Let f(x) be an irreducible polynomial over F , let α ∈ C
be a zero of f(x), and let β be a zero of σf(x), the polynomial obtained
from f(x) by applying σ to each coefficient (see 9.8).

14.3.1 Theorem. There exists an isomorphism σ1 : F (α) → F0(β) such
that σ1|F = σ and σ1(α) = β.

Proof. The homomorphism F [x] → F0[x] induced by σ is an isomorphism
(since σ is) and it maps f(x) to σf(x) and hence induces an isomorphism
F [x]/(f(x))→ F0[x]/(σf(x)). Using part (iv) of Section 12.4, as well as its
proof, we have isomorphisms as indicated:

F (α) → F [x]/(f(x)) → F0[x]/(σf(x)) → F0(β),

g(α) 7→ g(x) + (f(x)) 7→ σg(x) + (σf(x)) 7→ σg(β).

We have used the fact that f(x) is an associate of pα(x) so that (pα(x)) =
(f(x)), and similarly (pβ(x)) = (σf(x)).

Let σ1 : F (α)→ F0(β) be the composition of these isomorphisms. If a ∈ F ,
then letting g(x) be the constant polynomial g(x) = a shows that σ1(a) =
σ(a), so that σ1|F = σ. Letting g(x) = x shows that σ1(α) = β.

14.4 Splitting field

Let F be a subfield of the field of complex numbers and let f(x) be a
nonconstant polynomial over F . The splitting field of f(x) over F is the
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field
E = F (α1, α2, . . . , αn),

where the αi are the zeros of f(x) in C. The terminology is due to the fact
that over its splitting field the polynomial f(x) “splits” into a product of
linear factors (a consequence of Section 9.4) and this splitting field is the
smallest subfield of C containing F over which f(x) splits.

The extension E ⊇ F is finite. Indeed, if for each 0 ≤ i ≤ n we put
Mi = F (α1, α2, . . . , αi), we get a tower

F = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn = E

with each step Mi ⊆Mi(αi+1) = Mi+1 finite, so Section 12.2 applies.

Let F0 be another subfield of the field of complex numbers and let σ : F → F0

be an isomorphism. Let E be the splitting field of f(x) over F and let E0

be the splitting field of σf(x) over F0.

14.4.1 Theorem. There exists an isomorphism σ̄ : E → E0 such that
σ̄|F = σ.

Proof. The proof is by induction on n = [E : F ]. Suppose n = 1. Then
E = F , so that f(x) splits into a product of linear factors over F . But
then σf(x) splits into a product of linear factors over F0, whence E0 = F0.
Therefore, we can just let σ̄ = σ.

Assume that n > 1. Then E % F , so there exists a zero α of f(x) that is
in E but not in F . In the factorization of f(x) as a product of irreducible
polynomials over F (9.7), one of the factors, say g(x), must have α as a zero.
Now σg(x) is irreducible over F0, so it is not constant and it therefore has a
zero β in C (14.1). Since σg(x) is a factor σf(x), it follows that β is a zero
of σf(x) as well, implying that β ∈ E0.

By Section 14.3, there exists an isomorphism σ1 : F (α) → F0(β) such that
σ1|F = σ. It is immediate that E is the splitting field of f(x) over F (α)
and E0 is the splitting field of σf(x) over F0(β). We have [E : F ] = [E :
F (α)][F (α) : F ] and [F (α) : F ] > 1, so [E : F (α)] < [E : F ] = n. By the
induction hypothesis, there exists an isomorphism σ̄ : E → E0 such that
σ̄|F (α) = σ1. Restricting both sides of this last equation to F gives σ̄|F = σ
as desired.
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14.5 Splitting field extension is normal

Let E ⊇ F be an extension of fields contained in the field of complex num-
bers. The extension E ⊇ F is a splitting field extension if E is the
splitting field of some nonconstant polynomial over F .

As noted in the preceding section, such an extension is finite. The following
theorem shows that it is normal as well. In particular, the fundamental
theorem of Galois theory (13.6) applies to a splitting field extension.

14.5.1 Theorem. If E ⊇ F is a splitting field extension, then it is nor-
mal.

Proof. Let E ⊇ F be a splitting field extension, so that E is the splitting
field of a nonconstant polynomial f(x) over F . In order to show that this
extension is normal, we need to show that F ′′ = F . In general, one has
F ′′ ⊇ F , so there is a tower E ⊇ F ′′ ⊇ F and hence a degree relationship
[E : F ] = [E : F ′′][F ′′ : F ]. Therefore, it suffices to show that [E : F ′′] =
[E : F ].

We observe that F ′′′ = F ′. Indeed, priming the relation F ′′ ⊇ F and
using the fact that a doubly primed subgroup contains the original produces
F ′′′ ⊆ F ′ ⊆ F ′′′, forcing equalities. Therefore, we have, using Section 13.3,

[E : F ] ≥ [E : F ′′] ≥ |F ′′′ : E′| = |F ′ : {ε}| = |G|,

where G is the Galois group of the extension. From this, we see that [E :
F ′′] = [E : F ] would follow if we were to show that |G| = [E : F ]. We
claim that this latter is the case and proceed to give a proof by induction
on n = [E : F ]. If n = 1, then E = F and G = {ε}, so both sides equal 1.

Assume that n > 1. Then E % F , so f(x) has a zero α that is in E but not
in F . As in the proof of 14.4, we find that f(x) has an irreducible factor
g(x) over F having α as a zero. Moreover, g(x) is not linear and it splits as
a product of linear factors over E. By Section 14.2, g(x) has r = deg g(x)
(distinct) zeros α1, α2, . . . , αr in E.

Put M = F (α) and H = M ′. Let σ1H,σ2H, . . . , σsH be the distinct
cosets of H in G. Arguing as in the proof of part (ii) of 13.3, we have
that σ1(α), σ2(α), . . . , σs(α) are distinct elements of E. By Exercise 13–1,
each of these elements is a zero of g(x) and hence equal to one of the ele-
ments αi (1 ≤ i ≤ r). This gives s ≤ r. We will establish equality here by
showing that each αi equals σj(α) for some j.
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Fix 1 ≤ i ≤ r. By Section 14.3, with σ : F → F taken to be the identity
map ε, we get an isomorphism τ : F (α) → F (αi) such that τ |F = σ and
τ(α) = αi. Now E is the splitting field of f(x) over F (α), and E is also
the splitting field of f(x) = τf(x) over F (αi), so Section 14.4 gives an
isomorphism τ̄ : E → E such that τ̄ |F (α) = τ . Restricting both sides of this
last equation to F , we get τ̄ |F = σ = ε. Therefore, τ̄ is an F -automorphism
of E, that is, τ̄ ∈ G. This automorphism lies in the coset σjH for some j,
whence τ̄ = σjµ for some µ ∈ H. We have

σj(α) = σjµ(α) = τ̄(α) = τ(α) = αi.

In view of the preceding paragraph, we have r = s, so that

|G : H| = s = r = deg g(x) = [F (α) : F ] = [M : F ].

As noted above, E is the splitting field of f(x) over M , and since [E : M ] <
[E : M ][M : F ] = [E : F ] = n, the induction hypothesis applies to give
[E : M ] = |H|. Therefore,

|G| = |H||G : H| = [E : M ][M : F ] = [E : F ],

and the proof is complete.

14.6 Definition: Galois group of polynomial

Let F be a subfield of the field of complex numbers, let f(x) be a nonconstant
polynomial over F . The Galois group of f(x) over F is the Galois group
G = AutF (E) of the extension E ⊇ F , where E is the splitting field of f(x)
over F .

Assume that f(x) is irreducible over F . By 14.2, f(x) has n = deg f(x)
(distinct) zeros α1, α2, . . . , αn in C. Put A = {α1, α2, . . . , αn}.

14.6.1 Theorem. The function ϕ : G→ Sym(A) given by ϕ(σ) = σ|A is
a group monomorphism.

Proof. Let σ ∈ G. By Exercise 13–1, σ(αi) ∈ A for each i, so σ maps A
into A. Since σ is injective and A is finite, it follows that σ|A is a bijection
A→ A, so σ|A ∈ Sym(A) and ϕ is well defined.

For σ, τ ∈ G, we have

ϕ(στ) = (στ)|A = σ|Aτ |A = ϕ(σ)ϕ(τ),
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so ϕ is a homomorphism.

Let σ ∈ kerϕ. Then σ|A is the identity map on A, meaning that σ(αi) = αi
for each i. We prove, by induction on k, that σ|Ek

= ε (0 ≤ k ≤ n), where
Ek = F (α1, α2, . . . , αk). The case k = 0 is immediate since E0 = F .

Assume that 0 < k ≤ n. Let β ∈ Ek. Since Ek = Ek−1(αk), β is a
linear combination of powers of αk with coefficients coming from Ek−1 (see
12.4). By the induction hypothesis, σ fixes each of the coefficients in such
a linear combination, and, since σ fixes αk, it fixes powers of αk as well.
Therefore, σ(β) = β. This establishes the claim that σ|Ek

= ε. In particular,
σ = σ|E = σ|En = ε. Thus, kerϕ is trivial and ϕ is injective. The proof is
complete.

In practice, we use the monomorphism ϕ to identify the Galois group G of
the irreducible polynomial f(x) with a subgroup of the symmetric group
Sym(A) and thereby view G as a group of permutations of the zeros of f(x).
By a further identification of αi with i, we even view G as a subgroup of Sn.

14.7 Example

Let f(x) = x5 − 6x + 3 ∈ Q[x]. We claim that the Galois group G of f(x)
over Q is (isomorphic to) the symmetric group S5.

First, f(x) is irreducible over Q by Eisenstein’s criterion with p = 3 (10.4).
By Section 14.2, f(x) has five distinct zeros α1, α2, . . . , α5 in C. Since
f(0) = 3, f(1) = −2 , and f(2) = 23, it follows that f(x) has a real zero
between 0 and 1 and a real zero between 1 and 2. Also, since f ′′(x) = 20x3,
the graph of f(x) is concave down to the left of 0 and concave up to the right
of 0, so f(x) has a third real zero to the left of 0 and no other real zeros.
We conclude that three of the αi are real and the other two are nonreal.

Identify αi with i and thereby view G as a subgroup of S5 (see 14.6). Let
E be the splitting field of f(x) over Q. We have E = Q(α1, α2, . . . , α5) ⊇
Q(α1), so, by the fundamental theorem of Galois theory (13.6) and Section
12.2,

|G| = [E : Q] = [E : Q(α1)][Q(α1) : Q].

It is evident that f(x) is the minimal polynomial of α1 over Q, so the degree
[Q(α1) : Q] is 5 by Section 12.4. Therefore, 5 divides the order of G. By
Cauchy’s theorem (which says that if a prime number p divides the order
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of a group, then the group has an element of order p), G has an element of
order 5, which must be a 5-cycle. By relabeling the αi if necessary, we may
(and do) assume that G contains the 5-cycle (1, 2, 3, 4, 5) and that α1 and
α2 are the two nonreal zeros of f(x). The restriction of complex conjugation
to E is an element of G that transposes α1 and α2 and leaves the real zeros
fixed, so G also contains the transposition (1, 2).

So far, we have that G contains the elements ρ = (1, 2, 3, 4, 5) and τ =
(1, 2). We claim that these two permutations generate S5. Generally, if
µ = (i1, i2, . . . , ir) is a cycle in a symmetric group Sn and σ ∈ Sn, then
the conjugate σµσ−1 equals (σ(i1), σ(i2), . . . , σ(ir)). Using this observation
one routinely checks that for each 1 ≤ i < 5, (i, i + 1) = ρi−1τρ−(i−1) ∈ G.
Again using the observation, it follows in turn that for each 1 ≤ i < j ≤ 5,
(i, j) = σ(i, i+ 1)σ−1 ∈ G, where σ = (j − 1, j)(j − 2, j − 1) · · · (i+ 1, i+ 2).
Since every element of S5 is a product of transpositions, we conclude that
G = S5 as claimed.

14.8 Adjoining pth roots

Let F be a subfield of the field of complex numbers and let p be a prime
number.

14.8.1 Theorem.

(i) The Galois group of xp − 1 over F is abelian.

(ii) If a ∈ F and F contains the zeros of xp − 1, then the Galois group of
xp − a over F is abelian.

Proof. (i) We have xp − 1 = (x− 1)(1 + x+ x2 + · · ·+ xp−1) (cf. cyclotomic
polynomial in 10.5). Since 1 is not a zero of the second factor, it follows that
xp − 1 has a zero ω in C with ω 6= 1. Now ωp = 1, so the order of ω in the
multiplicative group of nonzero complex numbers divides p. Since this order
is not 1 and p is prime, we see that the order is precisely p. In particular,
1, ω, ω2, . . . , ωp−1 are distinct. For each i, (ωi)p = (ωp)i = 1i = 1, implying
that ωi is a zero of the polynomial xp − 1. We conclude that ωi (0 ≤ i < p)
are all of the zeros of xp − 1 in C. Therefore, the splitting field of xp − 1
over F is E := F (1, ω, ω2, . . . , ωp−1) = F (ω).

The Galois group of xp − 1 over F is, by definition, the Galois group G =
AutF (E) of the extension E ⊇ F . Let σ, τ ∈ G. By Exercise 13–1, σ(ω) = ωi
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for some i. Similarly, τ(ω) = ωj for some j. Therefore,

στ(ω) = σ(ωj) = σ(ω)j = (ωi)j

= (ωj)i = τ(ω)i = τ(ωi) = τσ(ω).

Since E = F (ω), an element of G is completely determined by its effect on
ω. Thus, στ = τσ. This shows that G is abelian as claimed.

(ii) Let a ∈ F and assume that F contains the zeros of xp− 1. Then ωi ∈ F
for each i, with ω as in the proof of part (i). Since xp − a is nonconstant, it
has a zero α in C. The numbers αωi (0 ≤ i < p) are zeros of xp−a and they
are distinct, so they are all of the zeros of xp − a in C. It follows that the
splitting field of xp − a over F is E := F (α, αω, αω2, . . . , αωp−1) = F (α).

Let σ, τ ∈ G, where G = AutF (E), the Galois group of xp − a over F . We
have σ(α) = αωi and τ(α) = αωj for some i and j, so, using that the powers
of ω are in F , we obtain

στ(α) = σ(αωj) = σ(α)ωj = αωiωj

= αωjωi = τ(α)ωi = τ(αωi) = τσ(α).

As in the proof of part (i), we conclude that G is abelian.

15 Solvability by radicals

15.1 Motivation

The polynomial f(x) = x10 − 2x5 − 2 over Q has
5
√

1 +
√

3 as a zero. We
imagine that this zero has been obtained from Q by using only extraction
of roots n

√
and field operations +, −, ×, ÷ (actually, only + in this case).

In order to make this process more precise, we proceed as follows: Let
α1 =

√
3 and α2 = 5

√
1 + α1 and note that the tower

Q ⊆ Q(α1) ⊆ Q(α1, α2)

has the property that α2
1 ∈ Q and α5

2 ∈ Q(α1). In other words, the process
can be thought of as an enlarging of the original field Q to the field Q(α1, α2)
one step at a time, with each step being carried out by adjoining to the
previous field a number having a power lying in that previous field, and
with the final field containing the zero α2 of the polynomial.
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The extension Q(α1, α2) ⊇ Q is an example of a radical extension (definition
in 15.3). If all of the zeros of a given polynomial over a subfield F of the
field of complex numbers lie in some radical extension of F , then it follows
that all of these zeros can be obtained from F by using only extraction of
roots and field operations, and we say that the polynomial is solvable by
radicals over F .

There is a stringent condition on when a polynomial over F can be solvable
by radicals over F , namely, the Galois group of the polynomial over F must
be solvable (see 15.4). A solvable group (definition in 15.2) can be thought
of as being built up of abelian groups. The proof of this condition is the
main goal of this section.

An arbitrary quadratic polynomial f(x) = ax2+bx+c is solvable by radicals
(as the quadratic formula shows), and the same is true of arbitrary cubic
and quartic polynomials. However, it is not the case that every quintic poly-
nomial is solvable by radicals. In other words, there does not exist an analog
of the quadratic formula that will give all of the zeros of an arbitrary quin-
tic polynomial. We prove this by exhibiting a particular quintic polynomial
having a Galois group that is not solvable (see 15.5).

15.2 Solvable group

Let G be a group. A solvable series of G is a tuple (Gi) = (G0, G1, . . . , Gr)
satisfying

(i) G0 = G,

(ii) Gr = {e},

(iii) Gi / Gi−1 for 0 < i ≤ r,

(iv) Gi−1/Gi is abelian for 0 < i ≤ r.

The group G is solvable if there exists a solvable series of G.

• If G is abelian, then it is solvable since (G0, G1) is a solvable series
of G, where G0 = G and G1 = {e}. This shows that the notion of
solvable group generalizes the notion of abelian group.
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• Let G = S3 = {ε, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}, the symmetric
group of degree 3. Put

G0 = G, G1 = 〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)}, G2 = {ε}.

Since G1 has index 2 in G, it is a normal subgroup. The quotient
G0/G1 is isomorphic to Z2 and the quotient G1/G2 is isomorphic to
Z3. Therefore, (G0, G1, G2) is a solvable series of G and G is solvable.

• The alternating group A5 (the subgroup of S5 consisting of even per-
mutations) is not solvable. In order to see this, we need the fact from
group theory that A5 is simple, that is, its only normal subgroups
are the trivial subgroup and itself. Suppose that there exists a solv-
able series (Gi) of A5. Then, for some i we must have Gi−1 = A5

and Gi = {ε}. This says that A5 is abelian since it is isomorphic to
Gi−1/Gi. However, σ = (1, 2, 3) and τ = (3, 4, 5) are both even per-
mutations (hence elements of A5), and στ 6= τσ, since στ(2) = 3 and
τσ(2) = 4, so A5 is not abelian. This is a contradiction. Thus, there
does not exist a solvable series of A5 and A5 is not solvable.

15.2.1 Theorem.

(i) Let H ≤ G. If G is solvable, then so is H.

(ii) Let ϕ : G→ G′ be a homomorphism. If G is solvable, then so is imϕ.

(iii) Let N / G. If N and G/N are both solvable, then so is G.

Proof. (i) Assume that G is solvable. There exists a solvable series (Gi)
of G. For each i, put Hi = H ∩ Gi. Fix i. Since Gi ⊆ Gi−1, we have
H ∩ Gi = H ∩ Gi−1 ∩ Gi = Hi−1 ∩ Gi, and using the second isomorphism
theorem for groups, we get

Hi−1/Hi = Hi−1/(H ∩Gi) = Hi−1/(Hi−1 ∩Gi)
∼= (Hi−1)Gi/Gi ≤ Gi−1/Gi.

Since Gi−1/Gi is abelian, so is Hi−1/Hi. Therefore, (Hi) is a solvable series
of H and H is solvable.

(ii) Assume that G is solvable. There exists a solvable series (Gi) of G.
Fix i. We have an epimorphism Gi−1 → ϕ(Gi−1)→ ϕ(Gi−1)/ϕ(Gi), where
the first map is the restriction of ϕ to Gi−1 and the second is the canonical
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epimorphism. Since Gi is contained in the kernel of this map, the funda-
mental homomorphism theorem for groups provides an induced epimorphism
Gi−1/Gi → ϕ(Gi−1)/ϕ(Gi). Since Gi−1/Gi is abelian, so is ϕ(Gi−1)/ϕ(Gi).
Therefore, (ϕ(Gi)) is a solvable series of ϕ(G) and imϕ = ϕ(G) is solvable.

(iii) Assume that N and G/N are both solvable. There exist solvable series
(Ni) and (G′i) of N and G/N , respectively. Fix i. By the correspondence
theorem for groups, G′i = Gi/N for some subgroup Gi of G containing N . By
the third isomorphism theorem for groups, Gi−1/Gi ∼= (Gi−1/N)/(Gi/N) =
G′i−1/G

′
i. Therefore, (G0, G1, . . . , N0, N1, . . .) is a solvable series of G and G

is solvable.

15.3 Radical extension

Let M ⊇ F be an extension of fields contained in the field of complex
numbers. The extension M ⊇ F is a radical extension if there exists a
tuple (α1, α2, . . . , αr) of complex numbers such that

(i) M = F (α1, α2, . . . , αr),

(ii) for each i, there exists a positive integer ni such that

αni
i ∈ F (α1, α2, . . . , αi−1).

Assume that M ⊇ F is a radical extension and let the notation be as above.
Further, for each i, put Mi = F (α1, α2, . . . , αi). Note that Mi = Mi−1(αi)
for each i.

We observe that M ⊇ F is a finite extension. Indeed, for each i the element
αi is algebraic over Mi−1 since it is a zero of the polynomial xni − αni

i over
Mi−1, so that each step in the tower M ⊇ Mr−1 ⊇ Mr−2 ⊇ · · · ⊇ M1 ⊇ F
is finite.

15.3.1 Theorem. If E ⊇ F is a normal, radical extension, then its Galois
group G is solvable.

Proof. Let E ⊇ F be a normal, radical extension. There exists a tuple
(α1, α2, . . . , αr) of complex numbers such that, with Ei := F (α1, α2, . . . , αi)
(0 ≤ i ≤ r), we have E = Er and, for each 0 < i ≤ r there exists a positive in-
teger ni such that αni

i ∈ Ei−1. Fix i and let ni = lm be a factorization of ni.
It is immediate that the augmented tuple (α1, α2, . . . , αi−1, α

l
i, αi, . . . , αr)
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continues to satisfy the properties in the definition of radical extension.
Therefore, by inserting numbers in this fashion if necessary, we may (and
do) assume that ni is prime for each i.

We prove the theorem by induction on r. If r = 0, then E = F , so that G
is trivial and hence solvable.

Assume that r > 0. We first assume that F contains the zeros of the
polynomial xn1 −1. By the proof of (ii) in Section 14.8, the splitting field of
the polynomial xn1 − αn1

1 over F equals F (α1). The extension F (α1) ⊇ F
is normal (14.5), so, by the fundamental theorem of Galois theory (13.6),
F (α1)

′ = AutF (α1)(E) is a normal subgroup of G and the corresponding
quotient is isomorphic to the Galois group of F (α1) over F , which is abelian
(and hence solvable) by Section 14.8. In light of part (iii) of 15.2, we see
that it suffices to show that the group AutF (α1)(E) is solvable. However,
writing

E = F (α1, α2, . . . , αr) = [F (α1)](α2, . . . , αr)

reveals that E ⊇ F (α1) is a radical extension. It is also a normal extension
since the subfield F (α1) of the field E is closed by the fundamental theorem
of Galois theory (13.6). Since the tuple (α2, . . . , αr) has r − 1 elements,
the induction hypothesis applies and the Galois group AutF (α1)(E) of this
extension is solvable. This completes the proof of the special case where F
contains the zeros of the polynomial xn1 − 1.

Now we turn to the general case. By the proof of (i) in Section 14.8, the
splitting field of the polynomial xn1 − 1 over F equals F (ω) with ω a zero
of xn1 − 1.

We claim that the extension E(ω) ⊇ F is finite and normal. Each step in the
tower E(ω) ⊇ E ⊇ F is finite, so E(ω) ⊇ F is finite. To check normality,
we use the condition in Exercise 13–3. Let α be an element of E(ω) not
in F . Since the extension E ⊇ F is normal, there exists σ ∈ G such that
σ(α) 6= α. By Section 14.3, there exists an isomorphism σ̄ : E(ω) → E(ω)
such that σ̄|E = σ. We have σ̄ ∈ AutF (E(ω)) and σ̄(α) = σ(α) 6= α. By the
stated exercise, the extension E(ω) ⊇ F is normal.

Now, the extension F (ω) ⊇ F is normal (14.5), so, by the fundamental the-
orem of Galois theory (13.6), applied to the extension E(ω) ⊇ F (valid since
this extension is finite and normal by the preceding paragraph), F (ω)′ is a
normal subgroup of AutF (E(ω)) and the corresponding quotient is isomor-
phic to the Galois group of F (ω) over F , which is abelian (and hence solv-
able) by Section 14.8. As in the special case, we conclude that it suffices to
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show that the group AutF (ω)(E(ω)) is solvable. The extension E(ω) ⊇ F (ω)
is normal (13.6), and writing

E(ω) = F (α1, α2, . . . , αr)(ω) = [F (ω)](α1, α2, . . . , αr),

we see that this extension is a radical extension as well. Since F (ω) contains
the zeros of the polynomial xn1 − 1, the special case proved above applies
and therefore AutF (ω)(E(ω)) is solvable. This completes the proof.

15.4 Polynomial solvable by radicals has solvable Galois group

Let F be a subfield of the field of complex numbers and let f(x) be a
polynomial over F . The polynomial f(x) is solvable by radicals over F
if its splitting field is contained in a radical extension of F .

Our goal in this section is to show that, if f(x) is solvable by radicals over
F , then its Galois group over F is solvable. The main tool for the proof
is the theorem in Section 15.3, which requires that the radical extension be
normal. Although a radical extension need not be normal in general, as the
extension Q( 3

√
2) ⊇ Q shows (see 13.4), the next lemma says that such an

extension can at least be enlarged to a normal, radical extension, which is
sufficient for our purposes.

15.4.1 Lemma. Let M ⊇ F be a radical extension. There exists a field
extension E ⊇M such that E ⊇ F is a normal, radical extension.

Proof. Let the notation be as in the definition of radical extension, and for
each i put Mi = F (α1, α2, . . . , αi). It was observed in Section 15.3 that
M ⊇ F is a finite extension. By Section 12.5, this extension is algebraic, so
each αi is algebraic over F .

Put f(x) = pα1(x)pα2(x) · · · pαr(x), where pαi(x) is the minimal polynomial
of αi over F , and let β1, β2, . . . , βn be the zeros of f(x) in C. Then E :=
F (β1, β2, . . . , βn) is the splitting field of f(x) over F . The extension E ⊇ F
is normal by Section 14.5. Moreover, for each i, the number αi is a zero of
pαi(x) and hence of f(x), so E ⊇ F (α1, α2, . . . , αr) = M .

Fix 1 ≤ j ≤ n. The number βj is a zero of pαi(x) for some i. By Section 14.3,
the identity map ε : F → F extends to an isomorphism F (αi)→ F (βj) that
sends αi to βj . By Section 14.4, this isomorphism extends to an isomorphism
τj : E → E. By construction, τj(αi) = βj and τj |F = ε.
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We have

E = F (τ1(α1), τ1(α2), . . . , τ1(αr),

τ2(α1), τ2(α2), . . . , τ2(αr),

...

τn(α1), τn(α2), . . . , τn(αr))

since the right hand member is a subfield of E that contains F and βj for
each j and E = F (β1, β2, . . . , βn). Also, this equation shows that E ⊇ F is
a radical extension, since, for each j and i,

τj(αi)
ni = τj(α

ni
i ) ∈ τj(Mi−1) ⊆ F (τj(α1), τj(α2), . . . , τj(αi−1)),

so τj(αi)
ni is contained in the field obtained from F by adjoining all of the

elements in the list that precede τj(αi).

15.4.2 Theorem. If f(x) is solvable by radicals over F , then its Galois
group over F is solvable.

Proof. Assume that f(x) is solvable by radicals over F . By definition, the
splitting field L of f(x) over F is contained in a radical extension M of
F . By the lemma, there exists an extension E of M such that E ⊇ F is
a normal, radical extension. According to Section 15.3, the Galois group
G = AutF (E) of the extension E ⊇ F is solvable.

Now L ⊇ F is normal (14.5), so, by the fundamental theorem of Galois
theory, L′ is a normal subgroup of G and the corresponding quotient G/L′

is isomorphic to AutF (L), the Galois group of f(x) over F . Finally, G/L′

is the image of the solvable group G under the canonical epimorphism π :
G→ G/L′, so AutF (L) ∼= G/L′ is solvable by part (ii) of Section 15.2. This
completes the proof.

15.5 Insolvability of the quintic

We end this section by exhibiting a quintic polynomial over Q that is not
solvable by radicals over Q.

Let f(x) = x5 − 6x + 3 ∈ Q[x]. By Section 14.7, the Galois group of f(x)
over Q is the symmetric group S5. If S5 were solvable, then its subgroup A5

would be solvable as well (part (i) of 15.2), but this is not the case as was
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shown in 15.2. Therefore, the Galois group of f(x) over Q is not solvable,
which implies (15.4) that f(x) is not solvable by radicals over Q.

As pointed out in Section 15.1, this shows that there cannot exist an analog
of the quadratic formula that gives the zeros of an arbitrary quintic poly-
nomial over Q. In fact, this is true of polynomials over Q of any degree
greater than or equal to five, the proof using the fact that the alternating
groups An are simple for n ≥ 5, just as the proof of our special case used
that A5 is simple.

A Writing proofs

A.1 Strings of relations

In a string of relations, the main news value should appear at the ends of
the string and all of the intermediate steps should be easily verifiable.

• If r > 2, then r2 + r − 6 = (r + 3)(r − 2) > 0 (r ∈ R).

The point being made is that if r is greater than 2, then r2 + r − 6 is
positive. The equality r2+r−6 = (r+3)(r−2) is verified by multiplying
out the right hand side; the inequality (r + 3)(r − 2) > 0 follows from
the fact that both factors are positive under the assumption r > 2.

• (2 + 3)2 = 52 = 25 6= 13 = 4 + 9 = 22 + 32.

This says that (2 + 3)2 6= 22 + 32.

• 1
2 + 2

3 −
1
4 = 6

12 + 8
12 −

3
12 = 11

12 /∈ Z.

This says that 1
2 + 2

3 −
1
4 is not an integer. It is confusing to the reader

if this point is made by writing 11
12 = 6

12 + 8
12 −

3
12 = 1

2 + 2
3 −

1
4 /∈ Z.

In working from left to right, he can easily check each step except for
the last, 1

2 + 2
3 −

1
4 /∈ Z. For this, he has to work backwards to see that

1
2 + 2

3 −
1
4 equals 11

12 which is not an integer.

A.2 If P, then Q.

To prove a statement of the form “If P , then Q” (which is the same as “P
implies Q”), assume that P is true and show that Q is true.
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• Let a, b, c ∈ R. If a < b and c < 0, then ca > cb.

Proof: Assume that a < b and c < 0. Since a < b, we have a− b < 0.
Therefore, ca− cb = c(a− b) > 0. Hence, ca > cb, as desired.

A.3 P if and only if Q

A statement of the form “P if and only if Q” is a combination of the two
statements “If P , then Q” and “If Q, then P ,” so it is often written with
a double implication symbol: “P ⇔ Q.” To prove such a statement, take
each implication separately and proceed as in A.2.

• For r ∈ R, r2 − 2r = −1 if and only if r = 1.

Proof: Let r ∈ R.

(⇒) Assume r2 − 2r = −1. Then (r − 1)2 = r2 − 2r + 1 = 0, which
implies r − 1 = 0. Hence, r = 1.

(⇐) Assume r = 1. Then r2 − 2r = 12 − 2(1) = −1.

It is common to use (⇒) and (⇐) as above to introduce the particular
implication being proved. Incidentally, you should convince yourself that
(⇐) corresponds to the statement “P if Q” while (⇒) corresponds to the
statement “P only if Q.”

A.4 Counterexample

To show that a statement involving “for every” is false, provide a single,
explicit counterexample.

• For every positive real number r, we have r3 > r2.

This statement is false, for if r = 1
2 , then r3 = 1

8 6>
1
4 = r2.

I could also have said that the statement is false, for if r is any real number
less than 1, then r3 − r2 = r2(r − 1) < 0, whence r3 < r2. However, the
explicit counterexample above is preferable to this argument in that it is
easier to understand and it says just what needs to be said.
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A.5 Showing “there exists”

To prove a statement involving “there exists,” just exhibit a single such
object and show that it satisfies the stated property.

• There exists an r ∈ R satisfying r2 + r − 12 = 0.

Proof: Put r = 3. We have r2 + r − 12 = 32 + 3− 12 = 0.

Note that I did not tell the reader how I came up with an r that works. There
is no obligation to reveal the thought process that leads to the insight. In
fact, doing so risks confusing the reader since it is unexpected. Also, I did
not include that r = −4 also works since exhibiting a single r sufficed.

A.6 Showing “for every”

To prove a statement involving “for every,” start with an arbitrary such
object and show that it satisfies the given property.

• For every r ∈ R with r ≥ 3, we have r2 − 2r + 1 ≥ 4.

Proof: Let r ∈ R with r ≥ 3. Then r2−2r+ 1 = (r−1)2 ≥ (3−1)2 =
4.

The first sentence of the proof means “Let r denote an arbitrary (i.e., any
old) real number greater than or equal to 3.”

A.7 Proof by contradiction

There is a method for proving a statement called “Proof by contradiction”
which is sometimes useful. To use this method, one assumes that the given
statement is false and then proceeds to derive a contradiction. The con-
tradiction signals the presence somewhere of an invalid step. Therefore,
provided all the other steps are valid, one can conclude that the initial as-
sumption was not correct, which is to say that the given statement is in fact
true.

• There are infinitely many prime numbers. (A prime number is an
integer greater than 1 that is evenly divisible by no positive integers
except 1 and itself (e.g., 2, 3, 5, 7, 11, . . . ).)
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Proof: Suppose the statement is false. In other words, suppose there
are only finitely many primes. We may enumerate them: p1, p2, . . . , pn.
Consider the number s := p1p2 · · · pn + 1. Now s is an integer greater
than 1, so it must be divisible by some prime, say pi. This means
that s = pim for some integer m. But then, 1 = s − p1p2 · · · pn =
pi(m − p1p2 · · · p̂i · · · pn) where the symbol p̂i means “delete pi.” The
expression in the parentheses is just some integer and, since it is not
possible to multiply the prime pi by another integer and get 1, this
is an obvious contradiction. Hence, our original assumption is wrong,
that is, there are infinitely many prime numbers.

This is essentially Euclid’s famous proof of the infinitude of primes.

A.8 Contrapositive

A statement of the form “If P , then Q” is logically equivalent to the state-
ment “If not Q, then not P” meaning that the first statement is true if and
only if the second statement is true (you should be able to convince yourself
that this is the case). This second statement is called the contrapositive
of the first. Sometimes, proving the contrapositive of a statement is easier
than proving the statement itself.

• If r 6= s, then 2r + 3 6= 2s+ 3 (r, s ∈ R).

Proof: We prove the contrapositive: If 2r + 3 = 2s + 3, then r = s.
Assume 2r + 3 = 2s + 3. Subtracting 3 from both sides and dividing
through by 2 gives r = s, as desired.

Occasionally, people give a proof by contradiction (see A.7) of a statement
that can be established more directly by proving its contrapositive. For
example, to prove the above statement by contradiction, we would start off
assuming that there exist r, s ∈ R such that r 6= s and 2r + 3 = 2s + 3.
Then, as above, we would obtain r = s, contradicting that r 6= s. This
proof is valid, but it is not as direct as the first proof. When a proof by
contradiction ends up contradicting one of the initial assumptions, as in this
case, it can usually be recast using the contrapositive. (Note that this was
not the case in the example worked for A.7.)
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A.9 Negation

In order to formulate the contrapositives of statements or to give proofs by
contradiction, one needs to be able to negate statements. Usually, this is
easy; for instance, the negative of a = b is a 6= b. However, more complicated
statements require some thought. Logicians have formal rules that can be
used to accurately negate extremely complex statements, but since most
statements occurring in mathematics have very simple logical structures,
mathematicians tend not to use the formulas relying instead on their own
reasoning. Statements involving “for every” sometimes cause problems, so
here is an example.

• ab = ba for every a, b ∈ G.

The negative is “There exist a, b ∈ G such that ab 6= ba” (not “ab 6= ba
for every a, b ∈ G”).

A.10 Variable scope

The “scope” of a variable in a proof refers to the portion of the proof that
starts where the variable is introduced and ends where the variable no longer
has meaning.

Generally, if a variable x is introduced with “If x. . . ” or “For every x. . . ,”
then that variable (and every variable that depends on it), ceases to have
meaning at the end of the sentence. Such a variable x is said to have “local
scope.”

On the other hand, a variable x introduced using “Let x. . . ” or “There exists
x. . . ” has meaning all the way to the end of the proof. Such a variable is
said to have “global scope.”

• If n is an even integer, then n = 2m for some integer m. Therefore,
m = n/2.

(Incorrect. Due to the conditional “If . . . ” the variable n has no
meaning past the first sentence. Since m depends on this n, it too has
no meaning past the first sentence.)

• Let n be an even integer. Then n = 2m for some integer m. Therefore,
m = n/2.
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(Correct. The phrase “Let n be an even integer” fixes an arbitrary even
integer, and from that point on n refers to that fixed even integer. The
m in the next sentence is chosen to satisfy n = 2m, so it too continues
to have meaning from that point on.)

• For every odd integer n, the integer n+1 is even. Therefore, n+1 = 2m
for some m ∈ Z.

(Incorrect. Due to the quantifier “For every,” n ceases to have meaning
past the first sentence.)

• Let n be an odd integer. Then n+ 1 is even, so n+ 1 = 2m for some
integer m. Therefore, m = (n+ 1)/2.

(Correct. Both n and m have the indicated meaning to the end of the
proof, unless the meaning is overwritten by a new statement, such as
“Let n be an even integer.”)
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