11 Invertibility

11.1 Introduction

If $f(x) = x^3 + 1$, then the inverse of f is given by $f^{-1}(x) = \sqrt[3]{x-1}$. The inverse function f^{-1} undoes what f does to an input:

$$f^{-1}(f(x)) = f^{-1}(x^3 + 1) = \sqrt[3]{(x^3 + 1) - 1} = x$$

(following f by f^{-1} gets one back to the original input). It is also true that $f(f^{-1}(x)) = x$ so that f undoes what f^{-1} does as well.

The inverse of a function f is useful for solving f(x) = b for x (i.e., finding the input that produces the output b). We have

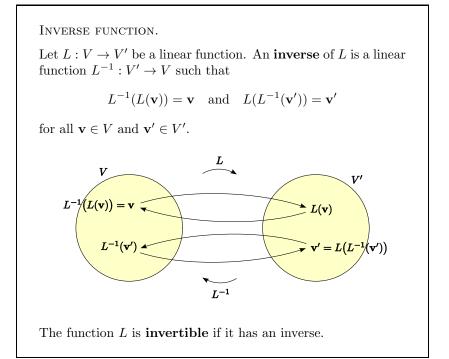
$$f(x) = b$$

$$f^{-1}(f(x)) = f^{-1}(b)$$

$$x = f^{-1}(b).$$

In this section, we study the analogous notion for a linear function $L: V \to V'$.

11.2 Inverse function



An invertible function has only one inverse. (If L^{-1} and \hat{L}^{-1} are both inverses of L, then for all $\mathbf{v}' \in V'$, we have $\hat{L}^{-1}(\mathbf{v}') = \hat{L}^{-1}(L(L^{-1}(\mathbf{v}'))) = L^{-1}(\mathbf{v}')$, so that $\hat{L}^{-1} = L^{-1}$.)

11.2.1 Example Let $L : \mathbf{R}^2 \to \mathbf{P}_2$ be the linear function given by

$$L(\mathbf{x}) = (x_1 + 2x_2)x + (x_1 + 3x_2).$$

- (a) Show that L is invertible with inverse $L^{-1}: \mathbf{P}_2 \to \mathbf{R}^2$ given by $L^{-1}(ax + b) = [3a 2b, -a + b]^T$.
- (b) Find **x** such that $L(\mathbf{x}) = 5x + 8$.

Solution

(a) For all \mathbf{x} in \mathbf{R}^2 , we have

$$L^{-1}(L(\mathbf{x})) = L^{-1}((x_1 + 2x_2)x + (x_1 + 3x_2)) = \begin{bmatrix} 3(x_1 + 2x_2) - 2(x_1 + 3x_2) \\ -(x_1 + 2x_2) + (x_1 + 3x_2) \end{bmatrix}$$
$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{x},$$

and for all $ax + b \in \mathbf{P}_2$, we have

$$L(L^{-1}(ax+b)) = L\left(\begin{bmatrix} 3a-2b\\ -a+b \end{bmatrix} \right) = ((3a-2b)+2(-a+b))x + ((3a-2b)+3(-a+b))$$

= ax + b.

(b) As was demonstrated in the introduction, the answer is

$$\mathbf{x} = L^{-1}(5x+8) = \begin{bmatrix} 3(5) - 2(8) \\ -(5) + (8) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

(Check: $L([-1,3]^T) = ((-1) + 2(3))x + ((-1) + 3(3)) = 5x + 8.)$

THEOREM. Let $L: V \to V'$ be a linear function. L is invertible if and only if both

- (i) ker $L = \{0\}$ and
- (ii) im L = V'.

Proof.

 (\Rightarrow) Assume that L is invertible with inverse $L^{-1}: V' \to V$.

(i) Let $\mathbf{v} \in \ker L$. Then

$$\begin{aligned} \mathbf{v} &= L^{-1}(L(\mathbf{v})) & \text{definition of inverse} \\ &= L^{-1}(\mathbf{0}) & \mathbf{v} \in \ker L \\ &= \mathbf{0} & \text{property of linear function} \end{aligned}$$

so $\mathbf{v} \in \{\mathbf{0}\}$. This shows that ker $L \subseteq \{\mathbf{0}\}$. The other inclusion holds since ker L is a subspace of V.

(ii) If $\mathbf{v}' \in V'$, then $\mathbf{v}' = L(L^{-1}(\mathbf{v}')) \in \operatorname{im} L$, so $V' \subseteq \operatorname{im} L$. The other inclusion holds by how L is defined.

(⇐) Assume that *L* satisfies (i) and (ii). Let $\mathbf{v}' \in V'$. Since im L = V', we know that $\mathbf{v}' = L(\mathbf{v})$ for some $\mathbf{v} \in V$. If also $\mathbf{v}' = L(\mathbf{w})$, then $L(\mathbf{v} - \mathbf{w}) = L(\mathbf{v}) - L(\mathbf{w}) = \mathbf{v}' - \mathbf{v}' = \mathbf{0}$ so that $\mathbf{v} - \mathbf{w} \in \ker L = \{\mathbf{0}\}$, that is $\mathbf{v} - \mathbf{w} = \mathbf{0}$, so that $\mathbf{v} = \mathbf{w}$. Therefore, \mathbf{v} is the unique vector in *V* such that $L(\mathbf{v}) = \mathbf{v}'$. Define $L^{-1}: V' \to V$ by letting $L^{-1}(\mathbf{v}')$ be the unique vector \mathbf{v} in *V* such that $L(\mathbf{v}) = \mathbf{v}'$.

11.2.2 Example Let $L : \mathbf{D}_{\mathbf{R}} \to \mathbf{F}_{\mathbf{R}}$ be the derivative function given by

L(f) = f'.

Is L invertible? Explain.

Solution The function L is not invertible since the constant function 1 is a nonzero function in the kernel of L, so that ker $L \neq \{0\}$.

The next theorem says that if L is a linear operator on a finite dimensional vector space, then it is invertible if *either* (i) or (ii) in the last theorem holds.

THEOREM. Let $L: V \to V$ be a linear operator on V and assume that V is finite-dimensional. L is invertible if either

- (i) ker $L = \{0\}$ or
- (ii) $\operatorname{im} L = V$.

Proof. Let n be the dimension of V. By the last theorem of Section 8.13,

$$\dim \operatorname{im} L + \dim \ker L = n.$$

If ker $L = \{0\}$, then dim ker L = 0, so this equation forces dim im L to be n, which in turn implies that im L = V' (im L is a subspace of V and since they both have the same dimension, they must be equal). By the last theorem, L is invertible.

On the other hand, if $\operatorname{im} L = V$, then $\operatorname{dim} \operatorname{im} L = n$, so the equation forces $\operatorname{dim} \ker L = 0$, which in turn implies that $\ker L = \{\mathbf{0}\}$. Again, the last theorem says that L is invertible.

11.2.3 Example Decide whether each of the following linear functions is invertible. If the function is invertible, find its inverse.

- (a) $L: \mathbf{R}^2 \to \mathbf{R}^2$ described by "90° counterclockwise rotation."
- (b) $L: \mathbf{R}^2 \to \mathbf{R}^2$ described by "projection onto the x_1 -axis."

Solution

- (a) The only vector that L sends to **0** is **0**, so ker $L = \{\mathbf{0}\}$. By the preceding theorem, L is invertible. In fact, L^{-1} is "90° clockwise rotation."
- (b) The vector $[0,1]^T$ is a nonzero vector in ker L, so ker $L \neq \{\mathbf{0}\}$ and L is not invertible by the first theorem above.

11.3 Inverse matrix

INVERSE MATRIX.

Let ${\bf A}$ be an $n\times n$ matrix. An **inverse** of ${\bf A}$ is an $n\times n$ matrix ${\bf A}^{-1}$ such that

 $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \quad \text{and} \quad \mathbf{A}\mathbf{A}^{-1} = \mathbf{I},$

where **I** is the $n \times n$ identity matrix. The matrix **A** is **invertible** (or **nonsingular**) if it has an inverse.

For example, the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -2 & 4 \end{bmatrix}$$

is invertible with inverse

$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix},$$

since

$$\mathbf{A}^{-1}\mathbf{A} = \begin{bmatrix} 2 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$

and

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 2 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}.$$

Actually, if the $n \times n$ matrix \mathbf{A}^{-1} satisfies $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$, then it will automatically satisfy $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ as well. Similarly, if $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, then automatically $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$. Therefore, in order to verify that one matrix is an inverse of another, it is only necessary to compute one product.

An invertible matrix has only one inverse. (If \mathbf{A}^{-1} and $\hat{\mathbf{A}}^{-1}$ are both inverses of \mathbf{A} , then $\hat{\mathbf{A}}^{-1} = \hat{\mathbf{A}}^{-1}\mathbf{I} = \hat{\mathbf{A}}^{-1}\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}\mathbf{A}^{-1} = \mathbf{A}^{-1}$.)

Suppose that a system of equations has corresponding matrix equation Ax = b. If A is invertible, then this equation can be solved as follows:

$$Ax = b$$
$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

11.3.1 Example Use an inverse matrix to solve the system

$$x_1 - x_2 = 3 -2x_1 + 4x_2 = 6.$$

Solution The corresponding matrix equation is Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -2 & 4 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}.$$

Using the inverse of A given above, we get

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} 2 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \end{bmatrix},$$

so $x_1 = 9$ and $x_2 = 6$.

11.4 Finding an inverse matrix

Let us try to find the inverse (if it exists) of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

We seek a matrix

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, that is

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Equating the entries, we get the two systems

$$a + 2c = 1$$

 $3a + 4c = 0$
 $b + 2d = 0$
 $3b + 4d = 1$

which have the corresponding augmented matrices

$\begin{bmatrix} 1 & 2 \end{bmatrix}$	2 1	Γ	1	2	0]
$\left[\begin{array}{rrr}1&2\\3&4\end{array}\right]$	4 0	L	3	4	$\begin{array}{c} 0 \\ 1 \end{array}$].

We can solve both systems simultaneously by applying row operations to a doubly augmented matrix:

$\left[\begin{array}{rrrr}1 & 2 & 1 & 0\\3 & 4 & 0 & 1\end{array}\right]^{-1}$	$^{-3}$) \sim	$\left[\begin{array}{c}1\\0\end{array}\right]$	$2 \\ -2$	$1 \\ -3$	$\begin{bmatrix} 0\\1 \end{bmatrix}_1$)
	\sim	$\left[\begin{array}{c}1\\0\end{array}\right]$	$\begin{array}{c} 0 \\ -2 \end{array}$	$-2 \\ -3$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{-\frac{1}{2}}$
	\sim	$\left[\begin{array}{c}1\\0\end{array}\right]$	$\begin{array}{c} 0 \\ 1 \end{array}$	$-2 \frac{3}{2}$	$\begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix}.$

Therefore, a = -2, $c = \frac{3}{2}$, b = 1, and $d = -\frac{1}{2}$. We conclude that

$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix},$$

which can be checked by showing that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.

This procedure for finding the inverse of a matrix generalizes to a square matrix of any size:

FINDING AN INVERSE MATRIX.

Let **A** be an $n \times n$ matrix. The inverse of **A** (if it exists) can be found by applying row operations to the augmented matrix $[\mathbf{A} | \mathbf{I}]$:

 $[\mathbf{A} | \mathbf{I}] \sim \cdots \sim [\mathbf{I} | \mathbf{A}^{-1}].$

If **A** is not row equivalent to **I**, then \mathbf{A}^{-1} does not exist.

11.4.1 Example Find the inverse (if it exists) of the following matrix :

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 \\ -2 & -6 & -1 \\ -3 & -8 & -3 \end{bmatrix}.$$

Solution Using the theorem, we have

$$\begin{bmatrix} \mathbf{A} \, | \, \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 \\ -2 & -6 & -1 \\ -3 & -8 & -3 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} \sim \begin{bmatrix} 1 & 3 & 3 \\ 0 & 0 & 5 \\ 0 & 1 & 6 \\ 3 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 6 \\ 3 & 0 & 1 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} \begin{pmatrix} 5 \\ 5 \\ -6 \\ -3 \end{pmatrix} \sim \begin{bmatrix} 5 & 15 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} \begin{pmatrix} -1 & -3 & 0 \\ 3 & -6 & 5 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} -3^{1} \\ \sim \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} \begin{pmatrix} -1 & -3 & 0 \\ -6 \\ -6 \\ -3 \end{pmatrix} \sim \begin{bmatrix} 5 & 15 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} -3^{1} \\ \sim \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ 2 & 1 & 0 \end{bmatrix} \frac{1}{5} \\ \frac{1}{5}$$

Therefore,

$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & 3 & -3\\ \frac{3}{5} & -\frac{6}{5} & 1\\ \frac{2}{5} & \frac{1}{5} & 0 \end{bmatrix},$$

which can be checked by showing that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.

Here is a formula for the inverse of an (invertible) 2×2 matrix: THEOREM. Let $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and put D = ad - bc. If $D \neq 0$ then \mathbf{A} is invertible and

$$\mathbf{A}^{-1} = \frac{1}{D} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Proof. We need only check that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. We have

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{D} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{D} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$= \frac{1}{D} \begin{bmatrix} D & 0 \\ 0 & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I},$$

as desired.

For instance,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = \frac{1}{(1)(4) - (2)(3)} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

in agreement with what we found earlier.

11.5 Theorems about inverses

THEOREM. Let \mathbf{A} be an $n \times n$ matrix. The following are equivalent:

- (i) \mathbf{A}^{-1} exists,
- (ii) $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbf{R}^n$,
- (iii) **A** has full rank,
- (iv) $\mathbf{A} \sim \mathbf{I}$.

Proof. (i \Rightarrow ii) Assuming (i), for each $\mathbf{b} \in \mathbf{R}^n$ we can solve the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ to get the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, so (ii) follows.

(ii \Rightarrow iii) Assume (ii) holds. Then $\mathbf{Ax} = \mathbf{0}$ has a unique solution. Therefore, no free variable will arise when we put the corresponding augmented matrix $[\mathbf{A} \mid \mathbf{0}]$ in REF. This implies that \mathbf{A} has full rank, so (iii) follows.

 $(iii \Rightarrow iv)$ Assuming (iii), we see that the RREF of **A** is **I**, so (iv) follows.

 $(iv \Rightarrow i)$ Assume (iv) holds. Applying row operations to $[\mathbf{A} | \mathbf{I}]$ will transform the left half into \mathbf{I} and, as was shown in Section 11.4, this process will transform the right half into \mathbf{A}^{-1} :

$$[\mathbf{A} | \mathbf{I}] \sim \cdots \sim [\mathbf{I} | \mathbf{A}^{-1}].$$

Therefore (i) follows.

THEOREM. Let A and B be $n \times n$ invertible matrices. The product AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof. We have

$$(\mathbf{AB})(\mathbf{B}^{-1}\mathbf{A}^{-1}) = \mathbf{A}(\mathbf{BB}^{-1})\mathbf{A}^{-1} = \mathbf{AIA}^{-1} = \mathbf{AA}^{-1} = \mathbf{I},$$

so $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ as claimed.

THEOREM. Let $L : \mathbf{R}^n \to \mathbf{R}^n$ be a linear function and let \mathbf{A} be the matrix of L. If \mathbf{A} is invertible, then L is invertible and L^{-1} has matrix \mathbf{A}^{-1} .

Proof. Assume that **A** is invertible. Define $M : \mathbf{R}^n \to \mathbf{R}^n$ by $M(\mathbf{x}) = \mathbf{A}^{-1}\mathbf{x}$. Then for every $\mathbf{x} \in \mathbf{R}^n$ we have

$$M(L(\mathbf{x})) = M(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = (\mathbf{A}^{-1}\mathbf{A})(\mathbf{x}) = \mathbf{I}\mathbf{x} = \mathbf{x}$$

and similarly $L(M(\mathbf{x})) = \mathbf{x}$. Therefore, $M = L^{-1}$ and, by the way M was defined, it follows that L^{-1} has matrix \mathbf{A}^{-1} .

11.5.1 Example Let $L : \mathbf{R}^2 \to \mathbf{R}^2$ be the function given by

$$L(\mathbf{x}) = \begin{bmatrix} x_1 + 2x_2\\ x_1 + 3x_2 \end{bmatrix}.$$

Find a formula for L^{-1} (if this inverse exists).

Solution The matrix of L is

$$\mathbf{A} = \begin{bmatrix} L(\mathbf{e}_1) & L(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 1 & 3 \end{bmatrix},$$

which has inverse

$$\mathbf{A}^{-1} = \frac{1}{(1)(3) - (2)(1)} \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}.$$

By the theorem, L^{-1} exists and its matrix is \mathbf{A}^{-1} . So, for every $\mathbf{x} \in \mathbf{R}^2$,

$$L^{-1}(\mathbf{x}) = \mathbf{A}^{-1}\mathbf{x} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_1 - 2x_2 \\ -x_1 + x_2 \end{bmatrix}.$$

	L

$11 - \mathrm{Exercises}$

11–1 Let $L: \mathbf{P}_4 \to \mathbf{M}_{2 \times 2}$ be the linear function given by

$$L(ax^{3} + bx^{2} + cx + d) = \begin{bmatrix} 2a - b & a \\ d & -c + 3d \end{bmatrix}.$$

(a) Show that L is invertible with inverse $L^{-1}: \mathbf{M}_{2 \times 2} \to \mathbf{P}_4$ given by

$$L^{-1}\left(\begin{bmatrix}\alpha & \beta\\\gamma & \delta\end{bmatrix}\right) = \beta x^3 + (-\alpha + 2\beta)x^2 + (3\gamma - \delta)x + \gamma.$$

(b) Find p such that $L(p) = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$.

11–2 Decide whether each of the following linear functions is invertible. If the function is invertible, find its inverse.

- (a) $L: \mathbf{F}_{\mathbf{R}} \to \mathbf{R}$ by L(f) = f(0).
- (b) $L: \mathbf{R}^2 \to \mathbf{R}^2$ described by "reflection across the line $x_2 = x_1$."

11–3 Find the inverse (if it exists) of the following matrix :

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix}.$$

11–4 Use an inverse matrix to solve the system

$$x_1 + x_3 = 5 -x_1 + x_2 + x_3 = 2 -x_1 - 2x_2 - 3x_3 = -3$$

HINT: Example 11.3.1 and Exercise 11–3.

11 - 5

(a) Use the formula for the inverse of a 2×2 matrix given in the last theorem of Section 11.4 to find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} -3 & -2\\ 9 & 5 \end{bmatrix}.$$

(b) Use part (a) to find a 2×2 matrix **X** such that $\mathbf{AX} = \mathbf{B}$ where

$$\mathbf{B} = \begin{bmatrix} 3 & -1 \\ -6 & 7 \end{bmatrix}.$$

11–6 Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear function given by

$$L(\mathbf{x}) = \begin{bmatrix} 6x_1 + 2x_2\\ 4x_1 + x_2 \end{bmatrix}.$$

Find a formula for L^{-1} (if this inverse exists).