
7 Dimension

7.1 Introduction

The reader has often heard the plane referred to as being “two dimensional”.
Intuitively, what this means is that, in the plane, one can move in two directions:
side to side or up and down. By combining movements in these directions, one
can move anywhere in the plane.

The notion of basis allows us to make this terminology precise: The plane
R2 has dimension two because it has a basis consisting of two vectors, namely,
e1 = [1, 0]T and e2 = [0, 1]T . The first vector and its multiples allow side-to-side
movement; the second vector and its multiples allow up-and-down movement.
Combinations of these movements correspond to linear combinations of these
two vectors and, since these vectors span the plane, any position in the plane
can be reached by using these two movements.

We have seen that {b1,b2}, where b1 = [3, 1]T and b2 = [1, 2]T is also a basis
for R2. The vector b1 allows for movement in roughly a side-to-side direction
and the vector b2 allows for movement in roughly an up-and-down direction.
Again, combinations of these movements allow one to reach any position in the
plane.

It is no accident that both bases of the plane, {e1, e2} and {b1,b2}, consist of
two vectors. It is a fact that every basis of the plane must consist of two vectors.
This allows one to define the dimension of R2 without referring to a particular
basis: the dimension of R2 is the number of vectors in any (and hence every)
basis, namely two.

In this section, we generalize this discussion and define the dimension of any
subspace S of Rn (including Rn itself) to be the number of vectors in any basis
of S. The crucial first step in this definition is showing that any two bases of S
must have the same number of vectors.

7.2 Definition and examples

The following theorem is the key step in showing that any two bases of a sub-
space have the same number of vectors.

Theorem. Let y1,y2, . . . ,ys be vectors in Rn and let S be their span. If
z1, z2, . . . , zt are vectors in S and t > s, then z1, z2, . . . , zt are linearly de-
pendent.

Proof. We prove only the special case s = 2, t = 3, since this will illustrate the
main ideas in the general proof. So we are assuming that y1,y2 span S and we
are trying to show that z1, z2, z3 are linearly dependent.
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7 DIMENSION 2

Since the vectors y1,y2 span S, we can write each of the vectors z1, z2, and z3
as a linear combination of y1 and y2:

z1 = β11y1 + β21y2,

z2 = β12y1 + β22y2,

z3 = β13y1 + β23y2.

The system of linear equations

β11x1 + β12x2 + β13x3 = 0

β21x1 + β22x2 + β23x3 = 0

has infinitely many solutions (has at least one solution due to the zeros on the
right, and fewer equations than unknowns so a free variable will occur), so we
can choose a solution α1, α2, α3 not all zero. Then

α1z1 + α2z2 + α3z3 = α1(β11y1 + β21y2) + α2(β12y1 + β22y2) + α3(β13y1 + β23y2)

= (β11α1 + β12α2 + β13α3)y1 + (β21α1 + β22α2 + β23α3)y2

= 0y1 + 0y2

= 0.

Since α1, α2, α3 are not all zero, it follows that z1, z2, z3 are linearly dependent.

Put another way, the theorem says that if a subspace S of Rn is spanned by
s vectors then any list of linearly independent vectors in S must consist of at
most s vectors.

Theorem. If {b1,b2, . . . ,bs} and {c1, c2, . . . , ct} are both bases for a subspace
S of Rn, then s = t.

Proof. Assume that {b1,b2, . . . ,bs} and {c1, c2, . . . , ct} are both bases for the
subspace S of Rn. Since the vectors b1,b2, . . . ,bs span S, and the vectors
c1, c2, . . . , ct are linearly independent, the preceding theorem implies that t ≤ s.
Reversing the roles of the bi’s and the ci’s, we also get s ≤ t. Therefore, s = t

as desired.

Dimension.

Let S be a subspace of Rn. If S has a basis consisting of s

vectors, we say that S has dimension s and we write dimS = s.
By convention, the subspace {0} has the empty set ∅ as basis
and therefore dimension 0.



7 DIMENSION 3

We emphasize that this definition makes sense only in view of the preceding
theorem, which says that any two bases for S must consist of the same number
of vectors. For, if this were not the case, one person might find a basis consisting
of two vectors and say that the dimension of S is two, while another person might
find a basis consisting of three vectors and say that the dimension of S is three.

7.2.1 Example Find the dimension of R3.

Solution Since the standard basis {e1, e2, e3} is a basis forR3, we have dimR3 =
3.

Similarly, the dimension of Rn is n for any n.

7.2.2 Example Find the dimension of S = Span{x1,x2}, where

x1 =





1
1
0



 , x2 =





0
1
1



 .

Solution In Example 6.2.3 it was shown that {x1,x2} is a basis for S. There-
fore, dimS = 2.

7.2.3 Example Let S be a subspace of Rn and assume that dimS = t.
Show that no fewer than t vectors in S can span S.

Solution Since S has dimension t, there is a basis {b1,b2, . . . ,bt} for S having
t vectors. If it were the case that there were fewer than t vectors in S that
spanned S, say, Span{c1, c2, . . . , cs} = S, with s < t, then the theorem above
would imply that b1,b2, . . . ,bt are linearly dependent, which is not the case.
Therefore, no fewer than t vectors in S can span S.

7.3 Facts about dimension

In this section, we give some useful facts about dimension.

We have seen that the only subspaces of R3 are the following:

{0}, lines through origin, planes through origin, R3.

The dimensions of these subspaces are 0, 1, 2, and 3 (in turn). This illustrates
the next theorem, which says that each subspace of Rn has dimension at most
n.

Theorem. If S is a subspace of Rn, then S has a basis and
dimS ≤ n.

https://web.auburn.edu/holmerr/2660/Textbook/basis-print.pdf#ex.6.2.3
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Proof. Let S be a subspace of Rn. Since dimRn = n, there is a set of n vectors
that spans Rn (namely, a basis). Therefore, any linearly independent collection
of vectors in S must consist of at most n vectors by the first theorem of Section
7.2. Let b1,b2, . . . ,bs be linearly independent vectors in S with s as large
as possible and note that s ≤ n by the previous observation. We claim that
B = {b1,b2, . . . ,bs} is a basis for S.

(Span{b1,b2, . . . ,bs} = S?) First, since S is a subspace, any linear combination
of vectors in S is still in S, so Span{b1,b2, . . . ,bs} ⊆ S. Next, we prove the
other inclusion. Let x be any vector in S. The vectors b1,b2, . . . ,bs,x cannot
be linearly independent since there are s+ 1 vectors here and we assumed that
the largest number of linearly independent vectors in S is s. Therefore, there
exist scalars α1, α2, . . . , αs+1, not all zero, such that

α1b1 + α2b2 + · · ·+ αsbs + αs+1x = 0.

Now αs+1 cannot be zero, since, if it were, then the last term would go away
and one of the scalars α1, α2, . . . , αs would have to be nonzero, which would
violate the assumption that the bi’s are linearly independent. Therefore, we
can solve the above equation for x (the last step being the division of both
sides by the nonzero number αs+1). This expresses x as a linear combination
of b1,b2, . . . ,bs. We conclude that Span{b1,b2, . . . ,bs} = S.

(b1,b2, . . . ,bs linearly independent?) The vectors b1,b2, . . . ,bs are linearly
independent by the way we chose them.

Therefore, B is a basis for S, so dimS = s ≤ n and the proof is complete.

The following theorem says that a spanning set of a subspace can be reduced
to a basis, and that a collection of linearly independent vectors in a subspace
can be expanded to a basis. The theorem also says how to carry out these
procedures.

Theorem. Let S be a subspace of Rn and let x1,x2, . . . ,xs be
vectors in S.

(i) If Span{x1,x2, . . . ,xs} = S, then a basis for S can be
obtained as follows: Starting from the left, if any xi is in
the span of the vectors that come before it, then remove xi

from the list and continue to the end of the list.

(ii) If x1,x2, . . . ,xs are linearly independent, then a basis for
S can be obtained as follows: If some vector x in S is not
in the span of the vectors in the list, then add it to the
list and repeat until the number of vectors in the list is the
same as dimS.
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Proof. We give only the main ideas of the proof.

(i) An argument similar to that given in Example 5.3.2 shows that if xi is in
the span of the vectors that come before it, then it can be removed without
changing the span. Exercise 7–3 shows why the final list of vectors is linearly
independent and hence a basis for their span.

(ii) An argument similar to the solution to Exercise 5–5 shows that if a list of
vectors is linearly independent and a vector not in the span of those vectors is
added to the list, then the new list is linearly independent. Since S is spanned
by t vectors, where t = dimS, the process cannot produce a list of more than
t linearly independent vectors (by the first theorem of Section 7.2). Therefore,
when the list has t vectors, these vectors must span S and hence form a basis.

By convention, the span of the empty set is {0}. Therefore, in part (i), if the
first vector is 0, then it is removed, and if it is not 0, then it is retained.

7.3.1 Example Find a subset of {x1,x2,x3,x4} that forms a basis for
S = Span{x1,x2,x3,x4}, where

x1 =

[

1
2

]

, x2 =

[

−2
−4

]

, x3 =

[

0
3

]

, x4 =

[

−1
1

]

Solution We follow the procedure in part (i) of the theorem. First, x1 is not 0
so it is retained. Next, x2 = −2x1, so x2 is removed from the list. Next, x3 is
not a linear combination (i.e., multiple in this case) of x1, so it is retained in the
list. Finally, by inspection (or solving a system) we see that x4 = (−1)x1+1x3,
so x4 is removed from the list. Therefore, {x1,x3} is a basis for S.

7.3.2 Example If possible, find a basis for R4 containing the vectors x1 =
[2, 5, 0, 0]T and x2 = [−1, 0, 3, 0]T .

Solution First, x1 and x2 are linearly independent, since neither is a linear
combination (i.e., multiple in this case) of the other, so part (ii) of the theorem
guarantees that such a basis can be found and we follow the procedure.

We claim that the vector x3 = [1, 0, 0, 0]T is not in Span{x1,x2}. Suppose, to
the contrary, that we had

x3 = α1x1 + α2x2,

that is,








1
0
0
0









= α1









2
5
0
0









+ α2









−1
0
3
0









.

Looking at the third components, we see that α2 must be zero so the last term
goes away. But then, looking at the second components, we see that α1 must be

https://web.auburn.edu/holmerr/2660/Textbook/linearindependence-print.pdf#ex.5.3.2
https://web.auburn.edu/holmerr/2660/Textbook/linearindependence-print.pdf#exrcs.5
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zero. But then the equation says that x3 = 0, which is not the case. Therefore,
x3 is not in Span{x1,x2} and we add it to the list to get x1,x2,x3.

Next, the vector x4 = [0, 0, 0, 1]T is not in Span{x1,x2,x3}, since the fourth
component in each of the vectors x1, x2, and x3 is zero, so there is no way to
form a linear combination of these vectors to get the required fourth component
1 in x4. Therefore, we add x4 to the list.

The list is now x1,x2,x3,x4. Since dimR4 = 4, the process stops and we
conclude that

{[2, 5, 0, 0]T , [−1, 0, 3, 0]T , [1, 0, 0, 0]T , [0, 0, 0, 1]T}

is a basis for R4.

(This is not the only possible solution.)

Theorem. Let S be a subspace of Rn of dimension s. If
b1,b2, . . . ,bs are s vectors in S, then {b1,b2, . . . ,bs} is a basis
for S if either of the following holds:

(i) Span{b1,b2, . . . ,bs} = S,

(ii) b1,b2, . . . ,bs are linearly independent.

Proof. Assume that (i) holds, so that Span{b1,b2, . . . ,bs} = S. By the pre-
ceding theorem, one can obtain a basis for S by removing vectors, if necessary,
from the list b1,b2, . . . ,bs. However, since any basis for S must have s vectors,
no vectors can be removed, that is, {b1,b2, . . . ,bs} is already a basis for S.

Showing that {b1,b2, . . . ,bs} is a basis if (ii) holds is left as an exercise (see
Exercise 7–6).

The theorem says that if you know in advance that a subspace has dimension
s, then you can tell whether a set of s vectors in S is a basis by checking only
one of the basis properties.

7.3.3 Example Show that {b1,b2} is a basis for R2, where

b1 =

[

3
−4

]

, b2 =

[

−1
9

]

.

Solution The vectors b1 and b2 are linearly independent since neither is a lin-
ear combination (i.e., multiple in this case) of the other. Since R2 has dimension
two, the theorem (with S = R2) says that {b1,b2} is a basis for R2.
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7.4 Subspaces associated with a matrix

Null space, Row space, Column space.

Let A be an m× n matrix.

� The null space of A (denoted NullA) is the set of all
vectors x in Rn for which Ax = 0.

� The row space of A (denoted RowA) is the subspace of
Rn spanned by the rows of A (written as columns).

� The column space of A (denoted ColA) is the subspace
of Rm spanned by the columns of A.

Theorem. If A and B are matrices with A ∼ B, then RowA =
RowB.

Proof. Assume first that B is obtained from A by applying a single row oper-
ation. If that row operation is of type I (interchange two rows), then RowA =
RowB. If that row operation is of type II or III, then the replaced row is a
linear combination of the rows of A so that RowB ⊆ RowA. By repeating this
for each applied row operation we see that if A ∼ B, then RowB ⊆ RowA.
But A ∼ B implies that B ∼ A so that RowA ⊆ RowB as well.

Theorem. If A is a matrix and B is a row echelon form of A,
then the nonzero rows of B (written as columns) form a basis
for RowA.

Proof. Let A and B be as stated. The nonzero rows of B are linearly indepen-
dent since the matrix having these rows as columns has full rank. Therefore,
these rows form a basis for their span RowB, which is the same as RowA by
the previous theorem.

Theorem. For any matrix A we have, dimColA =
dimRowA.

Proof. Let B be a row echelon form of A. The columns of A corresponding to
the pivot columns of B are linearly independent by the theorem before Example
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5.2.3. Since the number p of these pivot columns is the same as the number of
nonzero rows of B, which is the dimension of RowA by the preceding theorem,
we have dimColA ≥ p = dimRowA. Applying this inequality to AT , we get
dimRowA = dimColAT ≥ dimRowAT = dimColA. Therefore, dimColA =
dimRowA.

7.4.1 Example Find a basis for each of the spaces NullA, RowA, and
ColA, where

A =





1 2 0 −1
−2 −4 1 6
−1 −2 1 5



 .

Solution (NullA) The equation Ax = 0 corresponds to a system with aug-
mented matrix





1 2 0 −1 0
−2 −4 1 6 0
−1 −2 1 5 0





2 1
∼





1 2 0 −1 0
0 0 1 4 0
0 0 1 4 0



−1

∼





1 2 0 −1 0
0 0 1 4 0
0 0 0 0 0

,





so NullA = {[−2t+ s, t,−4s, s]T | t, s ∈ R}. Since









−2t+ s

t

−4s
s









= t









−2
1
0
0









+ s









1
0
−4
1









,

the vectors [−2, 1, 0, 0]T and [1, 0,−4, 1]T span NullA. Also, they are lin-
early independent. (In fact, this method of writing the general solution as a
linear combination will always yield linearly independent vectors.) Therefore
{[−2, 1, 0, 0]T , [1, 0,−4, 1]T} is a basis for NullA.

(RowA) By the second theorem above, the nonzero rows in a row echelon
form of A form a basis for RowA, so {[1, 2, 0,−1]T , [0, 0, 1, 4]T} is a basis for
RowA.

(ColA) By the third theorem above, dimColA is the same as dimRowA,
which is two by what we just showed. Therefore, any two linearly independent
vectors in ColA will form a basis.

The first and third columns of the row echelon form ofA that we found above are
the pivot columns. These columns might not be in ColA, since row equivalent
matrices do not necessarily have the same column space. However, the corre-
sponding columns of the original matrix A, namely [1,−2,−1]T and [0, 1, 1]T

are in ColA. Moreover, these columns are linearly independent. (In fact, the

https://web.auburn.edu/holmerr/2660/Textbook/linearindependence-print.pdf#ex.5.2.3
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columns of the original matrix corresponding to the pivot columns in a row
echelon form of the matrix will always be linearly independent since the matrix
they form will have full rank.) Therefore, {[1,−2,−1]T , [0, 1, 1]T} is a basis for
ColA.

We summarize the steps in the preceding solution:

Finding bases for Null A, Row A, and Col A.

� (NullA) Solve Ax = 0, write general solution as linear
combination by grouping like terms, and use resulting vec-
tors as basis.

� (RowA) Find row-reduced form of A and use its nonzero
rows (written as columns) as basis.

� (ColA) Find row-reduced form of A and use for basis the
columns of the original matrix A corresponding to the
pivot columns in the row-reduced matrix.

7.4.2 Example Find a basis for each of the spaces NullA, RowA, and
ColA, where

A =









1 1 0 0 3
0 0 1 0 −1
1 1 1 1 4
−2 −2 3 0 −9









.

Solution (NullA) Solving Ax = 0, we get









1 1 0 0 3 0
0 0 1 0 −1 0
1 1 1 1 4 0
−2 −2 3 0 −9 0









−1 2

∼









1 1 0 0 3 0
0 0 1 0 −1 0
0 0 1 1 1 0
0 0 3 0 −3 0









−1 −3

∼









1 1 0 0 3 0
0 0 1 0 −1 0
0 0 0 1 2 0
0 0 0 0 0 0









,
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so NullA = {[−t− 3s, t, s,−2s, s]T | t, s ∈ R}. Since












−t− 3s
t

s

−2s
s













= t













−1
1
0
0
0













+ s













−3
0
1
−2
1













,

the set {[−1, 1, 0, 0, 0]T , [−3, 0, 1,−2, 1]T} is a basis for NullA.

(RowA) {[1, 1, 0, 0, 3]T , [0, 0, 1, 0,−1]T , [0, 0, 0, 1, 2]T} is a basis for RowA.

(ColA) Columns one, three, and four are the pivot columns, so

{[1, 0, 1,−2]T , [0, 1, 1, 3]T , [0, 0, 1, 0]T}

is a basis for ColA.

The dimension of the row space of a matrix is called the rank of the matrix.
By the third theorem of this section, this number is also the dimension of the
column space of the matrix:

rankA = dimRowA (= dimColA).

The dimension of the null space of a matrix is called the nullity of the matrix:

nullityA = dimNullA.

Rank + Nullity Theorem.

If A is an m× n matrix, then

rankA+ nullityA = n.

Proof. Let A be an m×n matrix. The rank ofA is the dimension of the column
space of A, which is the number of pivot columns in a row-echelon form of A
(see Example 7.4.1). The nullity of A is the dimension of the null space of A,
which is the number of nonpivot columns in a row-echelon form of A (again, see
Example 7.4.1). Therefore, rankA + nullityA is the total number of columns
of A, which is n.

7.4.3 Example Verify the Rank + Nullity theorem using the matrix A of
Example 7.4.2.

Solution Referring to the solution to Example 7.4.2, we have

rankA+ nullityA = 3 + 2 = 5 = n,
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so the Rank + Nullity theorem is verified.

Theorem. Let L : Rn → Rm be a linear function and let A be
the matrix of L (so that L(x) = Ax for all x in Rn). We have

(i) imL = ColA,

(ii) kerL = NullA.

(iii) dim imL+ dimkerL = n

Proof. (i) The product Ax can be interpreted as the linear combination of the
columns of A with scalar factors given by the entries in x. Therefore,

imL = {L(x) |x ∈ Rn} = {Ax |x ∈ Rn} = ColA.

(ii) This follows directly from the definitions:

kerL = {x ∈ Rn |L(x) = 0} = {x ∈ Rn |Ax = 0} = NullA.

(iii) Using parts (i) and (ii) and the Rank + Nullity theorem, we have

dim imL+ dimkerL = dimColA+ dimNullA = rankA+ nullityA = n.

The equation in part (iii) can be written

dim imL = dimRn − dimkerL

and interpreted as saying that the number of degrees of freedom in the space of
outputs of L is that in the space of inputs less that lost by being sent to 0.

7.4.4 Example Let L : R3 → R2 be the linear function given by

L(x) =

[

x1 + x2 + x3

5x1 + 5x2 + 5x3

]

.

(a) Find a basis for kerL.

(b) Find a basis for imL.

(c) Verify part (iii) of the previous theorem.

Solution
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(a) By the previous theorem, kerL = NullA where A is the matrix of L. We
have

A =
[

L(e1) L(e2) L(e3)
]

=

[

1 1 1
5 5 5

]

.

Solving Ax = 0 we are led to the augmented matrix

[

1 1 1 0
5 5 5 0

]

−5
∼

[

1 1 1 0
0 0 0 0

]

,

so kerL = NullA = {[−t− s, t, s]T | t, s ∈ R}. Since





−t− s

t

s



 = t





−1
1
0



+ s





−1
0
1



 ,

{[−1, 1, 0]T , [−1, 0, 1]T} is a basis for kerL.

(b) By the previous theorem, imL = ColA, so {[1, 5]T} is a basis for imL.

(c) We have dim imL+dimkerL = 1+2 = 3 = n, so part (iii) of the theorem
is verified.

7 – Exercises

7–1 Find the dimension of S = Span{x1,x2,x3}, where

x1 =









1
1
1
0









, x2 =









1
1
0
1









, x3 =









1
0
1
1









.
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7–2 Let S and T be subspaces of Rn with T ⊆ S. Show that dimT ≤ dimS.

Hint: By the first theorem of Section 7.3, S has a basis {b1,b2, . . . ,bs} and T

has a basis {c1, c2, . . . , ct}. Now use the first theorem of Section 7.2.

7–3 Let x1, x2, x3, and x4 be vectors in Rn and assume that none is in the
span of the vectors that come before it in the list. Show that the vectors are
linearly independent.

Hint: You are being asked to provide a portion of the proof of the theorem
before Example 7.3.1. Argue directly from the definition of linear independence.
Suppose that α1x1+α2x2+α3x3+α4x4 = 0. Show that if α4 is not zero, then
a contradiction arises. Therefore, α4 = 0 and the last term on the left goes
away. Repeat the argument to show that αi = 0 for all i.

7–4 Find a subset of {x1,x2,x3,x4,x5} that forms a basis for S = Span{x1,

x2,x3,x4,x5}, where

x1 =





0
0
0



 , x2 =





−1
3
−2



 , x3 =





2
−6
4



 , x4 =





2
0
8



 , x5 =





−2
9
−2



 .

7–5 If possible, find a basis for R4 containing the vectors x1 = [1, 0, 0, 1]T and
x2 = [2, 1,−3, 0]T .

7–6 Let S be a subspace of Rn of dimension s and let b1,b2, . . . ,bs be s

linearly independent vectors in S. Show that {b1,b2, . . . ,bs} is a basis for S.

Hint: You are being asked to complete the proof of the theorem before Example
7.3.3. Use an argument similar to that given in the first part of the proof.

7–7 Show that {x1,x2,x3} is a basis for R3, where

x1 =





1
2
−3



 , x2 =





0
1
−5



 , x3 =





−3
−6
4



 .
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Hint: Use the theorem before Example 7.3.3.

7–8 Find a basis for each of the spaces NullA, RowA, and ColA, where

A =









1 2 5 2 4
−1 −2 −5 −2 −3
0 1 3 −2 8
2 3 7 6 0









.

7–9 Let L : R3 → R3 be the linear function given by

L(x) =





x1 + 2x2

−3x1 − 6x2 + x3

2x1 + 4x2



 .

(a) Find a basis for kerL.

(b) Find a basis for imL.

(c) Verify part (iii) of the theorem before Example 7.4.4 .
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