
12 Determinant

12.1 Definition

Let A be an n× n matrix. The “determinant” of A, written detA, is a certain
number associated to A.

This number has some useful properties. For instance, the matrixA is invertible
if and only if detA is nonzero.

Also, | detA| is the volume of the parallelepiped formed by the columns of A
(the “Jacobian” is a determinant that appears in an integral after a change of
variables due to this property).

The determinant is defined recursively:

1× 1 determinant

The determinant of a 1× 1 matrix is the single entry itself:

det
[

a
]

= a.

2× 2 determinant

The determinant of a 2× 2 matrix is given by the formula

det

[

a b
c d

]

= ad− bc.

For instance,

det

[

3 −1
4 2

]

= (3)(2)− (−1)(4) = 10.

The determinant is also notated using vertical lines:

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc.

3× 3 determinant

In order to define the determinant of a 3× 3 matrix we need some terminology.
Let

A =





2 −1 0
1 3 2
5 1 6



 .

1
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The (i, j)-minor of A, denoted mij , is the determinant of the matrix obtained
from A by removing the ith row and the jth column. For instance,

m11 =

∣

∣

∣

∣

3 2
1 6

∣

∣

∣

∣

, m12 =

∣

∣

∣

∣

1 2
5 6

∣

∣

∣

∣

, m13 =

∣

∣

∣

∣

1 3
5 1

∣

∣

∣

∣

,

m21 =

∣

∣

∣

∣

−1 0
1 6

∣

∣

∣

∣

, etc.

These are the numbers 16, −4, −14, −6, etc.

The (i, j)-cofactor ofA, denoted cij , is the corresponding minor mij multiplied
by the number (−1)i+j :

cij = (−1)i+jmij .

For instance,

c11 = (−1)1+1m11 = (+1)

∣

∣

∣

∣

3 2
1 6

∣

∣

∣

∣

= (+1)(16) = 16,

c12 = (−1)1+2m12 = (−1)

∣

∣

∣

∣

1 2
5 6

∣

∣

∣

∣

= (−1)(−4) = 4,

c13 = (−1)1+3m13 = (+1)

∣

∣

∣

∣

1 3
5 1

∣

∣

∣

∣

= (+1)(−14) = −14,

c21 = (−1)2+1m21 = (−1)

∣

∣

∣

∣

−1 0
1 6

∣

∣

∣

∣

= (−1)(−6) = 6,

etc.

Instead of computing (−1)i+j , it is often easier just to use the fact that it is
either +1 or −1 with the sign given by a checkerboard pattern:





+ − +
− + −
+ − +



 .

The determinant of the 3× 3 matrix A is (using the above computations)

detA = a11c11 + a12c12 + a13c13

= (2)(16) + (−1)(4) + (0)(−14)

= 28.

(aij is the entry in the ith row and jth column of A).

In words, the determinant is computed by multiplying each entry in the first row
by its corresponding cofactor and adding the results. This is called computing
the determinant by “expanding along the first row.”

It is a fact that the determinant can be computed by expanding along any row or
any column (with the same results). For instance, expanding along the second
column we get

detA = a12c12 + a22c22 + a23c23,
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so
∣

∣

∣

∣

∣

∣

2 −1 0
1 3 2
5 1 6

∣

∣

∣

∣

∣

∣

= −1(−1)

∣

∣

∣

∣

1 2
5 6

∣

∣

∣

∣

+ 3(+1)

∣

∣

∣

∣

2 0
5 6

∣

∣

∣

∣

+ 1(−1)

∣

∣

∣

∣

2 0
1 2

∣

∣

∣

∣

= (−4) + 3(12)− (4)

= 28

(same as before).

It is usually the best strategy to expand along a row or column with the greatest
number of zeros.

12.1.1 Example Find the determinant of the matrix

A =





2 1 0
4 5 0
−7 8 3



 .

Solution We expand along the third column (due to the zeros) and get

detA =

∣

∣

∣

∣

∣

∣

2 1 0
4 5 0
−7 8 3

∣

∣

∣

∣

∣

∣

= 0 + 0 + 3(+1)

∣

∣

∣

∣

2 1
4 5

∣

∣

∣

∣

= 3(6) = 18.

n× n determinant

The determinant of an n×n matrix is defined just like the determinant of a 3×3
matrix: choose any row or column, multiply its entries by their corresponding
cofactors, and add the results.

12.1.2 Example Find the determinant of the matrix

A =









2 1 2 1
3 0 1 1
−1 2 −2 1
0 2 0 1









.

Solution We expand along the fourth row (due to the zeros) and for the result-
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ing 3× 3 determinants, we expand along the first and second rows, respectively:

detA =

∣

∣

∣

∣

∣

∣

∣

∣

2 1 2 1
3 0 1 1
−1 2 −2 1
0 2 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0 + 2(+1)

∣

∣

∣

∣

∣

∣

2 2 1
3 1 1
−1 −2 1

∣

∣

∣

∣

∣

∣

+ 0 + 1(+1)

∣

∣

∣

∣

∣

∣

2 1 2
3 0 1
−1 2 −2

∣

∣

∣

∣

∣

∣

= 2

(

2(+1)

∣

∣

∣

∣

1 1
−2 1

∣

∣

∣

∣

+ 2(−1)

∣

∣

∣

∣

3 1
−1 1

∣

∣

∣

∣

+ 1(+1)

∣

∣

∣

∣

3 1
−1 −2

∣

∣

∣

∣

)

+ 1

(

3(−1)

∣

∣

∣

∣

1 2
2 −2

∣

∣

∣

∣

+ 0 + 1(−1)

∣

∣

∣

∣

2 1
−1 2

∣

∣

∣

∣

)

= 2

(

2(3)− 2(4) + (−5)

)

+ 1

(

− 3(−6)− (5)

)

= −1.

12.2 Inverse matrix and determinant

Let

A =





−1 2 3
−3 6 8
−3 1 3



 .

The cofactor matrix of A is

C =





c11 c12 c13
c21 c22 c23
c31 c32 c33





=























+

∣

∣

∣

∣

6 8
1 3

∣

∣

∣

∣

−

∣

∣

∣

∣

−3 8
−3 3

∣

∣

∣

∣

+

∣

∣

∣

∣

−3 6
−3 1

∣

∣

∣

∣

−

∣

∣

∣

∣

2 3
1 3

∣

∣

∣

∣

+

∣

∣

∣

∣

−1 3
−3 3

∣

∣

∣

∣

−

∣

∣

∣

∣

−1 2
−3 1

∣

∣

∣

∣

+

∣

∣

∣

∣

2 3
6 8

∣

∣

∣

∣

−

∣

∣

∣

∣

−1 3
−3 8

∣

∣

∣

∣

+

∣

∣

∣

∣

−1 2
−3 6

∣

∣

∣

∣























=





10 −15 15
−3 6 −5
−2 −1 0



 .
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The adjoint of A, denoted AdjA is the transpose of this cofactor matrix:

AdjA = CT =





10 −3 −2
−15 6 −1
15 −5 0



 .

If we multiply A and AdjA, we get

A(AdjA) =





−1 2 3
−3 6 8
−3 1 3









10 −3 −2
−15 6 −1
15 −5 0





=





5 0 0
0 5 0
0 0 5





= 5 I.

The number 5 turns out to be the determinant of A (as the reader can check).
Therefore, we have

A(AdjA) = (detA)I

This formula holds in general and shows that AdjA is nearly an inverse of A;
we just need to divide it by detA, provided this determinant is nonzero.

Theorem. If A is an n × n matrix and detA 6= 0, then A is
invertible and

A−1 =
1

detA
AdjA.

Continuing to work with A as above, we get

A−1 =
1

detA
AdjA =

1

5





10 −3 −2
−15 6 −1
15 −5 0



 =





2 − 3

5
− 2

5

−3 6

5
− 1

5

3 −1 0



 .

12.2.1 Example Use this theorem to find the inverse of the general 2× 2
matrix

A =

[

a b
c d

]

assuming detA 6= 0.

Solution The cofactor matrix of A is

C =

[

d −c
−b a

]

,
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so the adjoint matrix of A is

AdjA = CT =

[

d −b
−c a

]

.

Therefore,

A−1 =
1

detA
AdjA =

1

ad− bc

[

d −b
−c a

]

.

(in agreement with the formula given in Section 11.4).

12.3 Properties

An n× n matrix is triangular if it has either of the following forms:








∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗









,









∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗









(illustrated here using 4× 4 matrices).

Themain diagonal entries of an n×nmatrixA are the entries a11, a22, . . . , ann.

Theorem. The determinant of a triangular matrix is the prod-
uct of its main diagonal entries.

The following example illustrates why this is the case:
∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

∣

∣

∣

∣

∣

∣

∣

∣

= 1(+1)

∣

∣

∣

∣

∣

∣

5 6 7
0 8 9
0 0 10

∣

∣

∣

∣

∣

∣

+ 0 + 0 + 0

= 1

(

5(+1)

∣

∣

∣

∣

8 9
0 10

∣

∣

∣

∣

+ 0 + 0

)

= (1)(5)(8)(10) = 400.

The next theorem says that the determinant of a product is the product of the
determinants.

Theorem. If A and B are n× n matrices, then

det(AB) = (detA)(detB)

https://web.auburn.edu/holmerr/2660/Textbook/invertibility-print.pdf#subsection.11.4
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12.3.1 Example Verify the theorem using the matrices

A =

[

1 2
3 4

]

and B =

[

5 1
0 3

]

.

Solution We have

detA =

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

= −2, detB =

∣

∣

∣

∣

5 1
0 3

∣

∣

∣

∣

= 15

and

det(AB) = det

([

1 2
3 4

] [

5 1
0 3

])

=

∣

∣

∣

∣

5 7
15 15

∣

∣

∣

∣

= −30,

so
det(AB) = −30 = (−2)(15) = (detA)(detB)

and the theorem is verified.

Theorem. If A is an n× n matrix, then A is invertible if and
only if detA 6= 0.

Proof. Let A be an n× n matrix.

(⇒) Assume that A is invertible so that A−1 exists. By the preceding theorem,

(detA)(detA−1) = det(AA−1) = det I = 1

(I is triangular). Therefore, detA 6= 0.

(⇐) Assume that detA 6= 0. By the theorem of Section 12.2, A is invertible.

Theorem. If A is an n× n matrix, then detAT = detA.

Proof. Let A be an n× n matrix. Since the columns of AT are the rows of A,
and since a determinant can be computed by expanding along either a row or a
column, the claim follows.

Theorem. If A is an n × n matrix and either its rows or
columns are linearly dependent, then detA = 0.



12 DETERMINANT 8

Proof. Let A be an n × n matrix and assume that its columns are linearly
dependent. Then A does not have full rank (5.2), so it is not invertible (11.5).
Therefore, detA = 0 by the previous theorem.

If the rows of A are linearly dependent, then the columns of AT are linearly
dependent, so, by what we have just shown, detA = detAT = 0.

12.3.2 Example Use inspection to find the determinant of each of the
following matrices:

(a) A =





1 2 0
3 4 0
5 6 0



,

(b) B =





1 0 0
2 3 0
4 5 6



,

(c) C =





1 0 1
0 1 1
1 0 1



.

Solution

(a) detA = 0 (either expand along the third column or use the theorem).

(b) detB = (1)(3)(6) = 18 (B is triangular).

(c) detC = 0 (the third column is the sum of the other two so the columns
are linearly dependent).

Theorem. Let c1, c2, and c3 be vectors in R3. The volume of
the parallelepiped determined by these three vectors is | detA|,
where A is the matrix having the three vectors as columns:

https://web.auburn.edu/holmerr/2660/Textbook/linearindependence-print.pdf#subsection.5.2
https://web.auburn.edu/holmerr/2660/Textbook/invertibility-print.pdf#subsection.11.5
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A proof of this is given in calculus where the indicated determinant is called the
scalar triple product of the vectors. It is this property of the determinant that
gives rise to the “Jacobian” in an integral after a change of variables.

The two dimensional analog holds as well. It says that the area of the paral-
lelogram determined by two vectors in R2 is | detA|, where A is the matrix
having the two vectors as columns. For instance, the area of the parallelogram
determined by the vectors [3, 1]T and [1, 2]T is

| det

[

3 1
1 2

]

| = 5

12.4 Effect of row operations

Theorem. Let A be an n×n matrix. If the matrix B is obtained
from A. . .

. . . by (I) interchanging two rows, then detB = − detA,

. . . by (II) multiplying a row by c, then detB = c detA,

. . . by (III) adding a multiple of one row to another row, then
detB = detA.

Proof. In each case, we can writeB = EA where E is the corresponding elemen-
tary matrix, namely, the matrix obtained from the identity matrix I by applying
the indicated row operation (see Exercise 2–3). By expanding repeatedly along
unaffected rows (much like we did in the example illustrating the first theorem
of 12.3) we eventually arrive at the following equalities in the three cases:

(I) detE = det

[

0 1
1 0

]

= −1,

(II) detE = det
[

c
]

= c,

(III) detE = det

[

1 0
c 1

]

= 1.

Since detB = detEA = (detE)(detA), the theorem follows.

https://web.auburn.edu/holmerr/2660/Textbook/matrixalgebra-print.pdf#exrcs.3
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The second statement (II) can be interpreted as saying that a number c can be
factored out of a row of the matrix. For instance,

∣

∣

∣

∣

∣

∣

3 6 9
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

.

This theorem gives us a way to compute a determinant that usually requires
fewer steps than expanding along a row or column. The strategy is to apply
row operations to put the matrix in triangular form (recording changes in the
determinant along the way) and then just take the product of the main diagonal
entries.

12.4.1 Example Find the determinant of the following matrix by first ap-
plying row operations to obtain a triangular matrix

A =





14 −7 28
−2 1 −1
−6 8 −10



 .

Solution We have

detA =

∣

∣

∣

∣

∣

∣

14 −7 28
−2 1 −1
−6 8 −10

∣

∣

∣

∣

∣

∣

(factor 7 out of first row)

= 7

∣

∣

∣

∣

∣

∣

2 −1 4
−2 1 −1
−6 8 −10

∣

∣

∣

∣

∣

∣

1 3
(no change)

= 7

∣

∣

∣

∣

∣

∣

2 −1 4
0 0 3
0 5 2

∣

∣

∣

∣

∣

∣

(sign change)

= −7

∣

∣

∣

∣

∣

∣

2 −1 4
0 5 2
0 0 3

∣

∣

∣

∣

∣

∣

= −7(2)(5)(3) = −210.

Caution: Since a type IV row operation is a combination of types II and III,
it changes the determinant. For instance,

∣

∣

∣

∣

−3 1
2 5

∣

∣

∣

∣

2
3

= 1

3

∣

∣

∣

∣

−3 1
0 17

∣

∣

∣

∣

= 1

3
(−3)(17) = −17.

One can combine the use of row operations with expansion along a row or
column:
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12.4.2 Example Combine row operations with expansion along a row or
column to find the determinant of the matrix

A =









1 2 −1 6
2 1 0 1
1 4 −1 5
3 1 1 2









.

Solution We have

detA =

∣

∣

∣

∣

∣

∣

∣

∣

1 2 −1 6
2 1 0 1
1 4 −1 5
3 1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

−1 1
(make third column mostly zeros)

=

∣

∣

∣

∣

∣

∣

∣

∣

0 −2 0 1
2 1 0 1
1 4 −1 5
4 5 0 7

∣

∣

∣

∣

∣

∣

∣

∣

(expand along third column)

= 0 + 0 + (−1)(+1)

∣

∣

∣

∣

∣

∣

0 −2 1
2 1 1
4 5 7

∣

∣

∣

∣

∣

∣

+ 0

= −

∣

∣

∣

∣

∣

∣

0 −2 1
2 1 1
4 5 7

∣

∣

∣

∣

∣

∣

−2 (make first column mostly zeros)

= −

∣

∣

∣

∣

∣

∣

0 −2 1
2 1 1
0 3 5

∣

∣

∣

∣

∣

∣

(expand along first column)

= −

(

0 + 2(−1)

∣

∣

∣

∣

−2 1
3 5

∣

∣

∣

∣

+ 0

)

= 2
(

(−2)(5)− (1)(3)
)

= −26.
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12.5 Cramer’s rule

Cramer’s rule.

Let A be an n × n invertible matrix and let b ∈ Rn. Let
Ai denote the matrix A with ith column replaced by b. The
equation Ax = b has solution

xi =
detAi

detA

(i = 1, 2, . . . , n).

Proof. Since A−1 exists, we can solve the equation Ax = b for x:

Ax = b

x = A−1b =
1

detA
(AdjA)b,

where we have used the theorem in Section 12.2. Comparing ith entries, we get

xi =
1

detA

(

c1ib1 + c2ib2 + · · · cnibn
)

=
1

detA
detAi

the last equality being checked by expanding detAi along the ith column.

12.5.1 Example Solve the following system using Cramer’s rule:

x1 + 3x2 + x3 = 1

2x1 + x2 + x3 = 5

−2x1 + 2x2 − x3 = −8.

Solution The corresponding matrix equation is Ax = b, where

A =





1 3 1
2 1 1
−2 2 −1



 , x =





x1

x2

x3



 , b =





1
5
−8



 .

We have

detA =

∣

∣

∣

∣

∣

∣

1 3 1
2 1 1
−2 2 −1

∣

∣

∣

∣

∣

∣

= 1(+1)

∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

+ 3(−1)

∣

∣

∣

∣

2 1
−2 −1

∣

∣

∣

∣

+ 1(+1)

∣

∣

∣

∣

2 1
−2 2

∣

∣

∣

∣

= (−3)− 3(0) + (6) = 3,
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so A is invertible and Cramer’s rule applies. Next,

detA1 =

∣

∣

∣

∣

∣

∣

1 3 1
5 1 1
−8 2 −1

∣

∣

∣

∣

∣

∣

= 1(+1)

∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

+ 3(−1)

∣

∣

∣

∣

5 1
−8 −1

∣

∣

∣

∣

+ 1(+1)

∣

∣

∣

∣

5 1
−8 2

∣

∣

∣

∣

= (−3)− 3(3) + (18) = 6,

so

x1 =
detA1

detA
=

6

3
= 2.

Similarly,

detA2 =

∣

∣

∣

∣

∣

∣

1 1 1
2 5 1
−2 −8 −1

∣

∣

∣

∣

∣

∣

= 1(+1)

∣

∣

∣

∣

5 1
−8 −1

∣

∣

∣

∣

+ 1(−1)

∣

∣

∣

∣

2 1
−2 −1

∣

∣

∣

∣

+ 1(+1)

∣

∣

∣

∣

2 5
−2 −8

∣

∣

∣

∣

= (3)− (0) + (−6) = −3,

so

x2 =
detA2

detA
=

−3

3
= −1.

Finally,

detA3 =

∣

∣

∣

∣

∣

∣

1 3 1
2 1 5
−2 2 −8

∣

∣

∣

∣

∣

∣

= 1(+1)

∣

∣

∣

∣

1 5
2 −8

∣

∣

∣

∣

+ 3(−1)

∣

∣

∣

∣

2 5
−2 −8

∣

∣

∣

∣

+ 1(+1)

∣

∣

∣

∣

2 1
−2 2

∣

∣

∣

∣

= (−18)− 3(−6) + (6) = 6,

so

x3 =
detA3

detA
=

6

3
= 2.

Therefore, the solution is x1 = 2, x2 = −1, and x3 = 2.

12 –Exercises
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12–1 Find the determinant of the matrix

A =





4 3 0
3 1 2
5 −1 −4



 .

12–2 Find the determinant of the matrix

A =









1 −3 2 0
0 1 2 1
2 0 0 3
5 1 −2 0









.

12–3 Find the inverse of the matrix

A =





1 1 1
1 2 3
1 4 9





by using the formula A−1 =
1

detA
AdjA (see Section 12.2).

12–4 Let A be an invertible matrix. Show that det(A−1) = 1/(detA).

Hint: Apply det to both sides of the equation AA−1 = I.

12–5 Use inspection to find the determinant of each of the following matrices:

(a) A =





1 2 4
−2 1 2
4 −3 −6



,

(b) B =





0 0 1
0 2 0
3 0 0



,

(c) C =









1 1 1 3
0 4 3 8
0 0 2 7
−1 −1 −1 0









.
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12–6 Find the determinant of the following matrix by first applying row op-
erations to obtain a triangular matrix

A =





24 40 −8
6 10 0
3 1 8



 .

12–7 Combine row operations with expansion along a row or column to find
the determinant of the matrix

A =









0 1 2 3
1 1 1 −1
3 2 4 2
1 −1 1 5









.

12–8 Solve the following system using Cramer’s rule:

x1 + x2 + 2x3 = 1

2x1 + 4x3 = 2

3x2 + x3 = 3.
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