6 Basis

6.1 Introduction

If \mathbf{x} , \mathbf{e}_1 , and \mathbf{e}_2 are as pictured, then using the geometrical rules for scaling and adding vectors we see that $\mathbf{x} = 7\mathbf{e}_1 + 4\mathbf{e}_2$.

We say that \mathbf{x} has \mathbf{e}_1 -coordinate 7 and \mathbf{e}_2 -coordinate 4. Similarly, we can find the coordinates of any vector with its tail at the origin by writing that vector as a linear combination of \mathbf{e}_1 and \mathbf{e}_2 and using the scalar factors. The vectors \mathbf{e}_1 and \mathbf{e}_2 set up a coordinate system in the plane. (It is this coordinate system we use when we write $\mathbf{x} = [7, 4]^T$.)

Other vectors in the plane can be used to set up a coordinate system as well. For instance, let

$$\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}.$$

Then $\mathbf{x} = 2\mathbf{b}_1 + 1\mathbf{b}_2$, so \mathbf{x} has \mathbf{b}_1 -coordinate 2 and \mathbf{b}_2 -coordinate 1. The vectors \mathbf{b}_1 and \mathbf{b}_2 also set up a coordinate system in the plane.

There are restrictions on which vectors can set up a coordinate system:

- (i) The single vector \mathbf{b}_1 cannot set up a coordinate system, since, for instance, \mathbf{x} cannot be written as a linear combination (= multiple) of \mathbf{b}_1 , so there is no way to get the coordinates of \mathbf{x} .
- (ii) The three vectors

$$\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad \mathbf{b}_3 = \begin{bmatrix} 2\\0 \end{bmatrix}$$

cannot set up a coordinate system, since, for instance the vector $\mathbf{x} = [7, 4]^T$ can be written as a linear combination of these vectors in two different ways,

$$x = -2b_1 + 3b_2 + 5b_3$$
 and $x = 6b_1 + (-1)b_2 + 5b_3$

and we cannot tell whether the coordinates of **x** should be $[-2,3,5]^T$ or $[6,-1,5]^T$.

The problem in (i) is that the span of $\{\mathbf{b}_1\}$ is not all of \mathbf{R}^2 . The problem in (ii) is that the vectors \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{b}_3 are not linearly independent. It turns out that if a collection of vectors spans the space we are trying to set up a coordinate system in and the vectors are linearly independent, then they can be used to set up a coordinate system. Such a collection is called a "basis" for the space.

6.2 Definition and examples

BASIS OF SUBSPACE.

Let S be a subspace of \mathbf{R}^n and let $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ be vectors in S. The set $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s\}$ is a **basis** for S if

- (i) $\operatorname{Span}\{\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_s\}=S.$
- (ii) $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_s$ are linearly independent.

6.2.1 Example (Standard basis)

Show that $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for \mathbf{R}^2 , where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Solution Because of the wording "... is a basis for \mathbf{R}^2 ," the role of S in the definition of basis is being played by \mathbf{R}^2 . We check the two properties:

(i) $(\text{Span}\{\mathbf{e}_1, \mathbf{e}_2\} = \mathbf{R}^2?)$ The way to show that two sets are equal is to show that each is a subset of the other. Since linear combinations of vectors in \mathbf{R}^2 are still vectors in \mathbf{R}^2 we have $\text{Span}\{\mathbf{e}_1, \mathbf{e}_2\} \subseteq \mathbf{R}^2$. For the other inclusion, we let $\mathbf{x} = [x_1, x_2]^T$ be an arbitrary vector in \mathbf{R}^2 . (Must show that \mathbf{x} is in $\text{Span}\{\mathbf{e}_1, \mathbf{e}_2\}$.) We need to show that $\mathbf{x} = \alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2$ for some scalars α_1 and α_2 , that is,

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

We can let $\alpha_1 = x_1$ and $\alpha_2 = x_2$. (We used inspection here, but usually one has to solve a system.) Therefore, $\mathbf{R}^2 \subseteq \text{Span}\{\mathbf{e}_1, \mathbf{e}_2\}$ and, since we showed the other inclusion earlier, we have $\text{Span}\{\mathbf{e}_1, \mathbf{e}_2\} = \mathbf{R}^2$.

(ii) $(\mathbf{e}_1, \mathbf{e}_2 \text{ linearly independent?})$ Neither vector is a linear combination (here, multiple) of the other, so \mathbf{e}_1 and \mathbf{e}_2 are linearly independent.

Therefore, $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for \mathbf{R}^2 .

More generally, the set of standard unit vectors $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is a basis for \mathbf{R}^n , called the **standard basis**.

6.2.2 Example Show that $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for \mathbf{R}^2 , where

$$\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}$$

Solution We check the two properties.

(i) $(\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\} = \mathbf{R}^2?)$ Every linear combination of vectors in \mathbf{R}^2 is a vector in \mathbf{R}^2 so $\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\} \subseteq \mathbf{R}^2$. Let $\mathbf{x} = [x_1, x_2]^T$ be an arbitrary vector in \mathbf{R}^2 . (Must show that \mathbf{x} is in $\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$.) We need to show that $\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2$ for some scalars α_1 and α_2 , that is,

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \alpha_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3\alpha_1 + \alpha_2 \\ \alpha_1 + 2\alpha_2 \end{bmatrix}.$$

This leads to a system with corresponding augmented matrix

$$\begin{bmatrix} 3 & 1 & x_1 \\ 1 & 2 & x_2 \end{bmatrix} - 3 \qquad \sim \qquad \begin{bmatrix} 3 & 1 & x_1 \\ 0 & -5 & x_1 - 3x_2 \end{bmatrix}$$

Since there is no pivot in the augmented column, a solution exists. Therefore, $\mathbf{R}^2 \subseteq \operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$, and, since we showed the other inclusion earlier, we have $\operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2\} = \mathbf{R}^2$.

(ii) $(\mathbf{b}_1, \mathbf{b}_2 \text{ linearly independent?})$ Neither vector is a linear combination (here, multiple) of the other, so \mathbf{b}_1 and \mathbf{b}_2 are linearly independent.

Therefore, $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for \mathbf{R}^2 .

6.2.3 Example Show that $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for $S = \text{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$, where

	$\lceil 1 \rceil$			$\begin{bmatrix} 0 \end{bmatrix}$	
$\mathbf{b}_1 =$	1	,	$\mathbf{b}_2 =$	1	
	$\begin{bmatrix} 0 \end{bmatrix}$			$\lfloor 1 \rfloor$	

Solution We check the two properties of basis:

- (i) $(\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\} = S?)$ Since S is defined to be $\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$ this property is automatically satisfied.
- (ii) $(\mathbf{b}_1, \mathbf{b}_2 \text{ linearly independent?})$ Neither vector is a linear combination (here, multiple) of the other, so \mathbf{b}_1 and \mathbf{b}_2 are linearly independent.

Therefore, $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for S.

6.2.4 Example Determine whether $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for \mathbf{R}^3 (where $\mathbf{e}_1 = [1, 0, 0]^T$, $\mathbf{e}_2 = [0, 1, 0]^T$).

Solution Span{ $\mathbf{e}_1, \mathbf{e}_2$ } consists of all vectors of the form $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 = [\alpha_1, \alpha_2, 0]^T$ (the third component must be zero). Since $[0, 0, 1]^T$ is a vector in \mathbf{R}^3 that is not in Span{ $\mathbf{e}_1, \mathbf{e}_2$ } we see that Span{ $\mathbf{e}_1, \mathbf{e}_2$ } $\neq \mathbf{R}^3$. Therefore, { $\mathbf{e}_1, \mathbf{e}_2$ } is not a basis for \mathbf{R}^3 .

(This counterexample was obtained by inspection. Here is some possible scratch work. Let $\mathbf{x} = [x_1, x_2, x_3]^T$ be an arbitrary vector in \mathbf{R}^3 . Trying to write \mathbf{x} as a linear combination of \mathbf{e}_1 and \mathbf{e}_2 leads to a system with augmented matrix

$$\left[\begin{array}{rrrr} 1 & 0 & x_1 \\ 0 & 1 & x_2 \\ 0 & 0 & x_3 \end{array}\right].$$

We see that there is no solution if $x_3 \neq 0$. This gives the idea for the counterexample above.)

6.2.5 Example Determine whether $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for $S = \text{Span}\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$, where

$$\mathbf{b}_1 = \begin{bmatrix} 5\\-1\\2\\4 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 6\\0\\-3\\9 \end{bmatrix}, \quad \mathbf{b}_3 = \begin{bmatrix} 2\\0\\-1\\3 \end{bmatrix}.$$

Solution By inspection, the second vector is a multiple of the third $(\mathbf{b}_2 = 3\mathbf{b}_3)$, so the vectors are not linearly independent. Therefore, the set is not a basis for S.

(If inspection such as this had been difficult, we would instead have applied row operations to the matrix having the vectors as columns, namely, $\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$. We would have found that this matrix does not have full rank, so the vectors are not linearly independent by the theorem before Example 5.2.3.)

6.3 Coordinate vector

Let \mathbf{b}_1 and \mathbf{b}_2 be the vectors in \mathbf{R}^2 given by

$$\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Since $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for \mathbf{R}^2 (see Example 6.2.2), any vector in \mathbf{R}^2 can be written *uniquely* as a linear combination of these two vectors (a vector can be written at least one way as a linear combination due to the spanning property of basis and at most one way due to the linear independence property of basis). For instance, if $\mathbf{x} = [7, 4]^T$, then

$$\mathbf{x} = 2\mathbf{b}_1 + 1\mathbf{b}_2.$$

We say that the "coordinate vector" of \mathbf{x} relative to the ordered basis $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ is $[2, 1]^T$. In symbols,

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 1 \end{bmatrix}.$$

This definition requires a specific ordering of the basis since, if the order is not fixed, then someone else might write $\mathbf{x} = 1\mathbf{b}_2 + 2\mathbf{b}_1$ and say that the coordinate vector of \mathbf{x} is $[1, 2]^T$.

Here is the general definition:

COORDINATE VECTOR.

Let S be a subspace of \mathbf{R}^n , let $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s)$ be an ordered basis for S, and let \mathbf{x} be a vector in S. The **coordinate** vector of \mathbf{x} relative to \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = [\alpha_1, \alpha_2, \dots, \alpha_s]^T$$

where $\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_s \mathbf{b}_s$.

Put more simply, the coordinate vector of \mathbf{x} relative to \mathcal{B} is found by writing \mathbf{x} as a linear combination of the (ordered) basis vectors, pulling off the scalar factors, and writing those factors as a column matrix.

6.3.1 Example Let $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ be the ordered basis of \mathbf{R}^2 with

$$\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}.$$

- (a) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$, where $\mathbf{x} = [9, 8]^T$.
- (b) Sketch the vectors \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{x} , as well as the coordinate system grid determined by \mathcal{B} .

Solution (a) We need to write \mathbf{x} as a linear combination of \mathbf{b}_1 and \mathbf{b}_2 :

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2$$

$$\begin{bmatrix} 9\\8 \end{bmatrix} = \alpha_1 \begin{bmatrix} 3\\1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 3\alpha_1 + \alpha_2\\\alpha_1 + 2\alpha_2 \end{bmatrix}$$

Equating components leads to a system with augmented matrix

$$\begin{bmatrix} 3 & 1 & | & 9 \\ 1 & 2 & | & 8 \end{bmatrix}_{-3} \rangle \sim \begin{bmatrix} 3 & 1 & | & 9 \\ 0 & -5 & | & -15 \end{bmatrix}_{-\frac{1}{5}} \\ \sim \begin{bmatrix} 3 & 1 & | & 9 \\ 0 & 1 & | & 3 \end{bmatrix}_{-1} \rangle \\ \sim \begin{bmatrix} 3 & 0 & | & 6 \\ 0 & 1 & | & 3 \end{bmatrix}^{\frac{1}{3}} \\ \sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \end{bmatrix}$$

Therefore, $\mathbf{x} = 2\mathbf{b}_1 + 3\mathbf{b}_2$ so that $[\mathbf{x}]_{\mathcal{B}} = [2,3]^T$.

(b) Here is the sketch:

The ordered basis \mathcal{B} sets up a new coordinate system (with grid in green). In this coordinate system the vector \mathbf{x} has \mathbf{b}_1 -coordinate 2 and \mathbf{b}_2 -coordinate 3.

6.3.2 Example Let $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ be the ordered basis of Span $\{\mathbf{b}_1, \mathbf{b}_2\}$ with

$$\mathbf{b}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

- (a) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$, where $\mathbf{x} = [1, 4, 3]^T$.
- (b) Find \mathbf{y} , given that $[\mathbf{y}]_{\mathcal{B}} = [9, -2]^T$.

Solution (a) We need to write \mathbf{x} as a linear combination of \mathbf{b}_1 and \mathbf{b}_2 :

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2$$

$$\begin{bmatrix} 1\\4\\3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} \alpha_1\\\alpha_1 + \alpha_2\\\alpha_2 \end{bmatrix}.$$

Equating components shows immediately that $\alpha_1 = 1$ and $\alpha_2 = 3$. (In this case, there is no need to use the augmented matrix of the system.) Therefore, $\mathbf{x} = 1\mathbf{b}_1 + 3\mathbf{b}_2$ so that $[\mathbf{x}]_{\mathcal{B}} = [1,3]^T$.

(b) We are given that $[\mathbf{y}]_{\mathcal{B}} = [9, -2]^T$. Therefore,

$$\mathbf{y} = 9\mathbf{b}_1 + (-2)\mathbf{b}_2 = 9\begin{bmatrix}1\\1\\0\end{bmatrix} + (-2)\begin{bmatrix}0\\1\\1\end{bmatrix} = \begin{bmatrix}9\\7\\-2\end{bmatrix}.$$

6.3.3 Example Let $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be the standard ordered basis of \mathbf{R}^3 . Find the coordinate vector $[\mathbf{x}]_{\mathcal{E}}$, where $\mathbf{x} = [4, 3, -5]^T$.

Solution Using inspection, we have

$$\mathbf{x} = \begin{bmatrix} 4\\3\\-5 \end{bmatrix} = 4 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 3 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + (-5) \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 4\mathbf{e}_1 + 3\mathbf{e}_2 + (-5)\mathbf{e}_3.$$

ore, $[\mathbf{x}]_{\mathcal{E}} = [4, 3, -5]^T.$

Therefore, $[\mathbf{x}]_{\mathcal{E}} = [4, 3, -5]^T$.

The example illustrates the fact that if \mathcal{E} is the standard basis for \mathbf{R}^n , then

 $[\mathbf{x}]_{\mathcal{E}} = \mathbf{x}$

for every vector \mathbf{x} in \mathbf{R}^n .

Put another way, when we specify a vector by giving a list of numbers, like $\mathbf{x} = [4, 3, -5]^T$, we are really giving the vector's coordinate vector relative to the standard basis.

6 - Exercises

6–1 Show that $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for \mathbf{R}^2 , where

$$\mathbf{b}_1 = \begin{bmatrix} 2\\ 2 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -4\\ 2 \end{bmatrix}.$$

6–2 Show that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for \mathbf{R}^3 , where

$$\mathbf{b}_1 = \begin{bmatrix} 0\\ 2\\ -1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\ -4\\ 0 \end{bmatrix}, \quad \mathbf{b}_3 = \begin{bmatrix} -1\\ -5\\ 5 \end{bmatrix}.$$

6–3 Determine whether $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for $S = \text{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$, where

$$\mathbf{b}_1 = \begin{bmatrix} 2\\-6\\4 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -3\\9\\-6 \end{bmatrix}.$$

6-4 Determine whether $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for $S = \{\mathbf{x} \in \mathbf{R}^3 | 3x_1 + x_2 + 4x_3 = 0\}$, where

$$\mathbf{b}_1 = \begin{bmatrix} -1\\7\\-1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 0\\8\\-2 \end{bmatrix}.$$

6–5 Let $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ be the ordered basis of \mathbf{R}^2 with

$$\mathbf{b}_1 = \begin{bmatrix} 2\\ 2 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -4\\ 2 \end{bmatrix}.$$

- (a) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$, where $\mathbf{x} = [-1, 5]^T$.
- (b) Sketch the vectors \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{x} , as well as the coordinate system grid determined by \mathcal{B} .

6–6 Let $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ be the ordered basis of $\text{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$ with

$$\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -1\\ 1\\ 3 \end{bmatrix}.$$

- (a) Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$, where $\mathbf{x} = [-1, 7, 7]^T$.
- (b) Find \mathbf{y} , given that $[\mathbf{y}]_{\mathcal{B}} = [4, -6]^T$.