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26. Linear approximation, Leibniz notation

26.1. Linearization

Functions that arise in applications can be quite unwieldy. Given such a function, it is
often possible to find a simpler function that behaves enough like the given function that
the simpler function can be used instead. Perhaps the simplest function is a linear function,
that is, a function having graph a straight line. In this section, we study the process of
approximating a function by using a linear function.

Definition of linearization. Let f be a function, let a be a real
number, and assume that f ′(a) exists. The linearization of f at a is
the function

L(x) = f(a) + f ′(a)(x− a).

The linearization L is the line that is tangent to the graph of f at the point (a, f(a))
expressed using function notation. Indeed, the tangent line at (a, f(a)) passes through this
point and has slope f ′(a), so its equation is

y − f(a) = f ′(a)(x− a).

Solving for y and replacing y with the function notation L(x) we get the stated formula.
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As the diagram shows, if x is close to the base point a, then L(x) (the height to the line
above x) is close to f(x) (the height to the curve above x) and therefore provides a good
approximation:

f(x) ≈ L(x) for x close to a.

As x moves away from a however, the approximation can become poor.

26.1.1 Example Use a linearization to approximate (7.91)2/3.

Solution With f defined to be f(x) = x2/3, the goal is to approximate f(7.91) using
a linearization of f . Such a linearization requires the choice of base point a (where the
tangent line is drawn). The strategy for picking a is to choose it close to 7.91 so that the
approximation will be good, but also choose it to be a number at which f and f ′ can be
easily evaluated. We choose a = 8. The corresponding linearization is

L(x) = f(a) + f ′(a)(x− a)

= 82/3 + 2
3 (8)−1/3(x− 8)

= 4 + 1
3 (x− 8).
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Therefore,
(7.91)2/3 = f(7.91) ≈ L(7.91) = 4 + 1

3 (7.91− 8) = 3.97.

(The actual value of (7.91)2/3 to four decimal places is 3.9699.)

26.2. Differentials

Let y = f(x) be a function and let x be a fixed number. We are interested in how the value
of the function changes if we change x by a small amount. If ∆x represents the change
in x, then the corresponding change in the value of the function, denoted ∆y, is the new
value minus the old value:

∆y = f(x + ∆x)− f(x). (1)

As is shown in the following diagram, ∆y is the change in height along the curve as x
changes by the amount ∆x.
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This change in height is approximated by the change in height along the tangent line
drawn at (x, f(x)). When referring to the tangent line, we use dx to represent a change
in x and denote by dy the corresponding change in y. The quantities dx and dy are called
differentials. Since the slope of the tangent line is f ′(x), we have

dy = f ′(x)dx. (2)

Therefore, if ∆x and dx are taken to be the same change in x (i.e., ∆x = dx) and this
change is small, then the change in height along the curve is approximately the same as
the change in height along the tangent line:

∆y ≈ dy for small ∆x = dx.

The similarity between this statement and the statement f(x) ≈ L(x) (for x close to a)
made above in the discussion of linearizations is not coincidental. Equation (1) defines the
variable ∆y as a function of the variable ∆x. The graph of this function is the same as the
graph of f with the point of tangency (x, f(x)) shifted to the origin. Similarly, Equation
(2) defines the variable dy as a function of the variable dx and this is the linearization of
the function ∆y at a = 0.

26.2.1 Example Let f(x) = x2/4. Find dy and ∆y using x = 2 and dx = 1 (= ∆x).
Sketch the graph of f and label the distances corresponding to the computed quantities.

Solution First, f ′(x) = 1
2x. Therefore, when x = 2 and dx = 1, we have

dy = f ′(x)dx = f ′(2)dx = (1)(1) = 1.

Next, when x = 2 and ∆x = 1, we have

∆y = f(x + ∆x)− f(x) = f(2 + 1)− f(2) = 9
4 − 1 = 5

4 .

Here is the sketch:
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26.3. Leibniz notation

Let y = f(x). When dx 6= 0, Equation (2) can be written

dy

dx
= f ′(x).

For this reason,
dy

dx
is often taken as another notation for f ′(x) (or, equivalently, y′). This

is called the Leibniz notation for the derivative of y.

We can now see the evolution of the use of the symbol
d

dx
to mean “the derivative of.”

Taking y = x2 + 3x− 4 as an example,

dy

dx
=

d[x2 + 3x− 4]

dx
=

d

dx

[
x2 + 3x− 4

]
.
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Due to the length of the expression x2 + 3x − 4, the last notation is preferred over the
middle notation for typographical reasons. However, when the function being differentiated
is written using a single letter, that letter is usually moved up next to the d:

d

dx
[y] becomes

dy

dx
.

Viewing the symbol
dy

dx
as an actual fraction can serve as a mnemonic device for remem-

bering certain definitions and theorems in calculus:

� The definition of the differential dy (see Equation (2)) becomes

dy =
dy

dx
dx,

so one imagines the dx’s on the right canceling.

� Using the definition of the derivative we have

lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x + ∆x)− f(x)

∆x
= f ′(x) =

dy

dx
,

so
dy

dx
is what the ratio

∆y

∆x
approaches as the change in x becomes ever smaller.

� For functions f and g, put y = f(g(x)) and u = g(x). Then y = f(u), and the chain
rule says

dy

dx
=

d

dx
[f(g(x))] = f ′(g(x))g′(x) = f ′(u)g′(x) =

dy

du

du

dx
.
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Therefore, the chain rule can be written

dy

dx
=

dy

du

du

dx
,

and one imagines the du’s on the right canceling.

� For a function f with inverse function f−1, put y = f(x). Then x = f−1(y), and the
rule for the derivative of an inverse function says

dx

dy
= (f−1)′(y) =

1

f ′(f−1(y))
=

1

f ′(x)
=

1

dy

dx

.

Therefore, the rule for the inverse of an inverse function can be written

dx

dy
=

1

dy

dx

and one imagines
dx

dy
as the reciprocal of the fraction

dy

dx
.

26.3.1 Example Use the Leibniz formulation of the chain rule to find the derivative
of y = (2x + 5)3.

Solution Putting u = 2x + 5, we have y = u3, so

dy

dx
=

dy

du

du

dx
= (3u2)(2) = 3(2x + 5)2(2).
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26 – Exercises

26 – 1 Use a linearization to approximate 4
√

16.16.

26 – 2 Let f(x) = 1 + 1/x. Find dy and ∆y using x = 1 and dx = 1/2 (= ∆x). Sketch the graph
of f and label the distances corresponding to the computed quantities.
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