25. Summary of derivative rules

25.1. Tables

The derivative rules that have been presented in the last several sections are collected together in the following tables. The first table gives the derivatives of the basic functions; the second table gives the rules that express a derivative of a function in terms of the derivatives of its component parts (the "derivative decomposition rules"). For the sake of completeness, a few new rules have been added.

Tables Examples Table of Contents 44 •• Page 1 of 11 Back Print Version Home Page

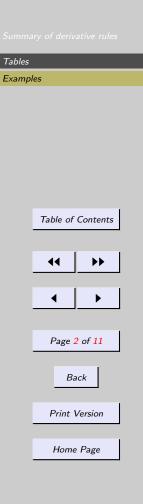
DERIVATIVES OF BASIC FUNCTIONS.

$$\frac{d}{dx} \left[c \right] = 0 \quad (c, \text{ constant}) \qquad \frac{d}{dx} \left[x^n \right] = n x^{n-1}$$

$$\frac{d}{dx} [e^x] = e^x \qquad \qquad \frac{d}{dx} [a^x] = a^x \ln a$$
$$\frac{d}{dx} [\ln |x|] = \frac{1}{x} \qquad \qquad \frac{d}{dx} [\log_a |x|] = \frac{1}{x \ln a}$$

$$\frac{d}{dx} [\sin x] = \cos x \qquad \qquad \frac{d}{dx} [\cos x] = -\sin x$$
$$\frac{d}{dx} [\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx} [\cot x] = -\csc^2 x$$
$$\frac{d}{dx} [\sec x] = \sec x \tan x \qquad \qquad \frac{d}{dx} [\csc x] = -\csc x \cot x$$

$$\frac{d}{dx} \left[\sin^{-1} x \right] = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \left[\cos^{-1} x \right] = -\frac{1}{\sqrt{1 - x^2}} \frac{d}{dx} \left[\tan^{-1} x \right] = \frac{1}{1 + x^2} \qquad \frac{d}{dx} \left[\cot^{-1} x \right] = -\frac{1}{1 + x^2} \frac{d}{dx} \left[\sec^{-1} x \right] = \frac{1}{x\sqrt{x^2 - 1}} \qquad \frac{d}{dx} \left[\csc^{-1} x \right] = -\frac{1}{x\sqrt{x^2 - 1}}$$



The rules for the derivative of a logarithm have been extended to handle the case of x < 0 by the addition of absolute value signs. If the absolute value signs are removed, the rules are still valid, but only for x > 0.

Tables		
Example	les	
		- 1
	Table of	Contents
	••	••
	•	•
	Page	3 of 11
	Ba	ack
	Print	Version
	Home	e Page

DERIVATIVE DECOMPOSITION RULES.

Constant multiple rule

$$\frac{d}{dx}\left[cf(x)\right] = c\frac{d}{dx}\left[f(x)\right]$$

 $\operatorname{Sum}/\operatorname{Difference}\,\operatorname{rule}$

$$\frac{d}{dx}\left[f(x) \pm g(x)\right] = \frac{d}{dx}\left[f(x)\right] \pm \frac{d}{dx}\left[g(x)\right]$$

Product rule

$$\frac{d}{dx}\left[f(x)g(x)\right] = \frac{d}{dx}\left[f(x)\right]g(x) + f(x)\frac{d}{dx}\left[g(x)\right]$$

Quotient rule

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}\left[f(x)\right] - f(x)\frac{d}{dx}\left[g(x)\right]}{(g(x))^2}$$

Chain rule

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

les			
mp	les		
	Table of	Contents	
	44	••	
		•••	
	•		
	•	→	
	Page 4	→	
	Page 4	• of 11	
	Page a	• of 11	
	Page a	▶ ¢ of 11	
	Page A Ba Print	▶ ¢ of 11	
	Page A Ba Print	¢ of 11	

Tab Exa

25.2. Examples

25.2.1 Example Verify the rule
$$\frac{d}{dx} [\tan x] = \sec^2 x.$$

Solution

$$\frac{d}{dx} [\tan x] = \frac{d}{dx} \left[\frac{\sin x}{\cos x} \right]$$
$$= \frac{\cos x \frac{d}{dx} [\sin x] - \sin x \frac{d}{dx} [\cos x]}{(\cos x)^2}$$
$$= \frac{\cos x (\cos x) - \sin x (-\sin x)}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x} = \sec^2 x.$$

25.2.2 Example Find the derivative of $f(x) = \sqrt[3]{\tan 5x + 1}$.

Tables Examples Table of Contents **▲** •• Page <mark>5</mark> of <mark>11</mark> Back Print Version Home Page

Summary of derivative rules

Solution

$$\begin{aligned} f'(x) &= \frac{d}{dx} \left[\sqrt[3]{\tan 5x + 1} \right] \\ &= \frac{1}{3} (\tan 5x + 1)^{-2/3} \cdot \frac{d}{dx} [\tan 5x + 1] \\ &= \frac{1}{3} (\tan 5x + 1)^{-2/3} \cdot \sec^2 5x \cdot 5 \\ &= \frac{5 \sec^2 5x}{3(\sqrt[3]{\tan 5x + 1})^2}. \end{aligned}$$

25.2.3 Example Find the derivatives of each of the following functions. Avoid the quotient rule.

(a)
$$f(x) = \frac{\sin 3x}{4}$$

(b)
$$f(x) = \frac{4}{\sin 3x}$$

Solution When either the numerator or the denominator is constant, the quotient rule can be avoided by first rewriting, and such a solution is generally easier than one using the quotient rule. (If neither numerator nor denominator is constant, then rewriting in order to use the product rule requires more steps than just using the quotient rule so is not advised.)

(a) Rewriting as
$$f(x) = \frac{1}{4}\sin 3x$$
, we have $f'(x) = \frac{1}{4}\cos 3x \cdot 3$.

Summary of derivative rules

Tables Examples Table of Contents **▲** •• Page 6 of 11 Back Print Version Home Page

(b) Rewriting as $f(x) = 4(\sin 3x)^{-1}$, we have

$$f'(x) = -4(\sin 3x)^{-2} \cdot \cos 3x \cdot 3 = -\frac{12\cos 3x}{\sin^2 3x}.$$

25.2.4 Example Find the derivative of $y = \frac{7}{\tan^{-1} 2x}$.

Solution We first rewrite as $y = 7(\tan^{-1} 2x)^{-1}$ to avoid using the quotient rule. (Incidentally, the -1's do not cancel since $\tan^{-1} 2x$ denotes the inverse tangent of 2x rather than $(\tan 2x)^{-1}$.) We have

$$y' = -7(\tan^{-1} 2x)^{-2} \cdot \frac{1}{1 + (2x)^2} \cdot 2 = -\frac{14}{(\tan^{-1} 2x)^2(1 + 4x^2)}.$$

25.2.5 Example Differentiate $f(t) = t^3 e^{\sec 2t}$.

Solution

$$f'(t) = \frac{d}{dt} [t^3 e^{\sec 2t}] = \frac{d}{dt} [t^3] e^{\sec 2t} + t^3 \frac{d}{dt} [e^{\sec 2t}] = 3t^2 e^{\sec 2t} + t^3 e^{\sec 2t} \frac{d}{dt} [\sec 2t] = 3t^2 e^{\sec 2t} + t^3 e^{\sec 2t} \sec 2t \tan 2t \cdot 2 = e^{\sec 2t} (3t^2 + 2t^3 \sec 2t \tan 2t) .$$

kampi	les	
	Table of Contents	
	44 >>	
	Page 7 of 11	
	Back	
	Print Version	
	Home Page	

Summary of derivative rule

Tables

Table

25.2.6 Example Find the derivative of $f(x) = \cot^x x$.

Solution Since $\cot^x x$ means $(\cot x)^x$, this is a case where neither base nor exponent is constant, so logarithmic differentiation is required:

$$n(f(x)) = \ln \cot^x x$$
$$= x \ln \cot x$$

 \mathbf{SO}

$$\frac{d}{dx} \left[\ln(f(x)) \right] = \frac{d}{dx} \left[x \ln \cot x \right]$$
$$\frac{1}{f(x)} \cdot f'(x) = \frac{d}{dx} \left[x \right] \ln \cot x + x \frac{d}{dx} \left[\ln \cot x \right]$$
$$= \ln \cot x + x \frac{1}{\cot x} \frac{d}{dx} \left[\cot x \right]$$
$$= \ln \cot x + x \frac{1}{\cot x} (-\csc^2 x)$$
$$= \ln \cot x - \frac{x}{\cos x \sin x},$$

and finally

$$f'(x) = f(x) \left(\ln \cot x - \frac{x}{\cos x \sin x} \right)$$
$$= \cot^x x \left(\ln \cot x - \frac{x}{\cos x \sin x} \right)$$

s							
pl	les						
							1
	7	Tab	ole c	of Co	onter	nts	
		◀	∢	1	••		
							l
			•		►		
							l
		,			C 11		
	_	-	age	e <mark>8</mark> o	of 11		
				Back	1		
				Баск			
		<i>г</i>		t Vei			
	_	-	rim	. vei	sion		
			Har	ne P	200		
			101	ne P	age		

25.2.7 Example Given
$$y = \csc^3\left(\frac{5^{2x}+x}{x\sin 3x - \ln(4+x^2)}\right)$$
, find y' without using intermediate steps

mediate steps.

Solution

$$y' = 3\csc^{2}\left(\frac{5^{2x} + x}{x\sin 3x - \ln(4 + x^{2})}\right)$$
$$\cdot -\csc\left(\frac{5^{2x} + x}{x\sin 3x - \ln(4 + x^{2})}\right)\cot\left(\frac{5^{2x} + x}{x\sin 3x - \ln(4 + x^{2})}\right)$$
$$\cdot \frac{(x\sin 3x - \ln(4 + x^{2}))(5^{2x}\ln 5(2) + 1) - (5^{2x} + x)(\sin 3x + 3x\cos 3x - \frac{2x}{4 + x^{2}})}{(x\sin 3x - \ln(4 + x^{2}))^{2}}$$

(We used, in order, (1) the chain rule with the cubing function as the outside function, (2) the chain rule with the cosecant function as the outside function, (3) the quotient rule.) \Box

Summary of derivative rules

Tables

Examples

Table of Contents **4** ◀ Page 9 of 11 Back Print Version Home Page

25-Exercises

25-1 Verify the rule
$$\frac{d}{dx} [\sec x] = \sec x \tan x.$$

- 25-2 Find the derivative of each of the following functions:
 - (a) $f(x) = \sqrt[5]{4x \sec 3x}$.
 - (b) $f(t) = \tan^{-1} e^{5t}$.

25-3 Find the derivative of each of the following functions:

(a)
$$y = 2^{\csc tx} \tan(\ln 4x)$$
.
(b) $y = \sec^{-1}\left(\frac{e^{3t}}{1+t^2}\right)$.

25-4 Differentiate
$$f(x) = \tan^{e^x} x$$
.

Summary of derivative rules

Tables Examples Table of Contents **▲** •• ◀ Page 10 of 11 Back Print Version Home Page

25-5 Find the derivative of the following function without using intermediate steps:

$$f(x) = \sin^6 \left(\frac{e^{\sec 3x}}{4x^3 - 2x + 5} \right).$$

Tables Examples Table of Contents **▲** ◀ Page 11 of 11 Back Print Version Home Page